
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P – Joint instrumentation & measurement infrastructure

for Scalasca, TAU, and Vampir

VI-HPS Team

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 2

•Calculation of metrics

•Identification of performance
problems

•Presentation of results

•Modifications intended to
eliminate/reduce performance
problem

•Collection of performance data

•Aggregation of performance data

•Build model of predicted
performance

•Select data to measure

•Prepare application with symbols

•Insert extra code (probes/hooks)

Preparation Measurement

AnalysisOptimization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P

 Infrastructure for instrumentation and performance measurements

 Instrumented application can be used to produce several results:
 Call-path profiling: CUBE4 data format used for data exchange

 Event-based tracing: OTF2 data format used for data exchange

 Supported parallel paradigms:
 Multi-process: MPI, SHMEM

 Thread-parallel: OpenMP, Pthreads

 Accelerator-based: CUDA, OpenCL, OpenACC, Kokkos

 Open Source; portable and scalable to all major HPC systems

 Initial project funded by BMBF

 Further developed in multiple 3rd-party funded projects

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P overview

446TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

Application

Vampir Scalasca TAU

Accelerator-based

parallelism

(CUDA, HIP, OpenACC,

OpenCL, Kokkos)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling

interrupts

(PAPI, PERF)

Call-path profiles

(CUBE4, TAU)

Process-level parallelism

(MPI, SHMEM)

Thread-level parallelism

(OpenMP, Pthreads)

Source code

instrumentation

(Compiler, PDT, User)

CUBE TAUdb

Hardware counter

(PAPI, rusage, PERF, plugins)

I/O Activity Recording

(Posix I/O,

MPI-IO)

Instrumentation wrapper

Extra-P

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Partners

 Forschungszentrum Jülich, Germany

 Gesellschaft für numerische Simulation mbH Braunschweig, Germany

 RWTH Aachen, Germany

 Technische Universität Darmstadt, Germany

 Technische Universität Dresden, Germany

 Technische Universität München, Germany

 University of Oregon, Eugene, USA

546TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance analysis steps

 0.0 Reference preparation for validation

 1.0 Program instrumentation

 1.1 Summary measurement collection

 1.2 Summary analysis report examination

 2.0 Summary experiment scoring

 2.1 Summary measurement collection with filtering

 2.2 Filtered summary analysis report examination

 3.0 Event trace collection

 3.1 Event trace examination & analysis

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 6

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Local installation (Karolina)

 Set account and environment (e.g. NVHPC + OpenMPI) via modules:

 Load the corresponding modules for the tool environment:

 Copy example sources to your WORK directory (or your personal workspace)
 Only required if not done already (for opening exercise)

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 7

% module load nvompi

% cd $WORK

% cp -r /mnt/proj2/dd-24-88/jsc/examples/CloverLeaf_OpenACC .

% cd CloverLeaf_OpenACC

% module load Scalasca/2.6.1-NVHPC-24.3-CUDA-12.3.0

Scalasca module loads Score-P

& CUBE module dependencies

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P instrumenter

 scorep instrumenter is used as a preposition to compile & link commands

 Instrumenter uses heuristics to determine when MPI & OpenMP are employed to

perform source processing, direct compilers' function instrumentation and link

measurement libraries
 no heuristics yet for CUDA, Kokkos, OpenACC, …

 Instrumenter is highly configurable via flags: see scorep --help

 should be used when heuristics fail or for custom instrumentation options

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 8

% scorep ftn -fopenmp -c solve.f90

% scorep cc -c timer.c

% scorep mpif90 -o a.out solve.o timer.o -fopenmp -lfft -lcuda

% scorep --cuda --nomemory mpif90 -o a.out solve.o timer.o -fopenmp -lfft -lcuda

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

CloverLeaf_OpenACC: Makefile

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 9

#Crown Copyright 2012 AWE
#
This file is part of CloverLeaf.
#
CloverLeaf is free software...
#
Agnostic, platform independent Makefile for the CloverLeaf benchmark code.
It is not meant to be clever in any way, just a simple build script.
#
this works as well:-
#
make COMPILER=PGI [OPENMP=1]
#

...

#PREP=scorep --openacc --cuda --user

MPI_COMPILER=$(PREP) mpif90

No preposition for C/CXX_MPI_COMPILER!
C_MPI_COMPILER=mpicc
CXX_MPI_COMPILER=mpic++

...

Specify the suite of compilers

(and optionally OpenMP)

No instrumentation by default

Set/uncomment PREP macro

for instrumenter preposition

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumenting clover_leaf

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 10

% make clean

% make PREP="scorep --openacc --cuda --user"

mpicc -c timer_c.c

scorep --openacc --cuda --user mpif90 -O3 -acc=gpu -ta=nvidia \

data.f90 definitions.f90 pack_kernel.f90 clover.F90 report.f90 timer.f90 \

parse.f90 read_input.f90 initialise_chunk_kernel.f90 initialise_chunk.f90 build_field.f90 \

update_tile_halo_kernel.f90 update_tile_halo.f90 update_halo_kernel.f90 update_halo.f90 \

ideal_gas_kernel.f90 ideal_gas.f90 start.f90 generate_chunk_kernel.f90 generate_chunk.f90 \

initialise.f90 field_summary_kernel.f90 field_summary.f90 viscosity_kernel.f90 viscosity.f90 \

calc_dt_kernel.f90 calc_dt.f90 timestep.f90 accelerate_kernel.f90 accelerate.f90 \

revert_kernel.f90 revert.f90 PdV_kernel.f90 PdV.f90 flux_calc_kernel.f90 flux_calc.f90 \

advec_cell_kernel.f90 advec_cell_driver.f90 advec_mom_kernel.f90 advec_mom_driver.f90 \

reset_field_kernel.f90 reset_field.f90 hydro.F90 clover_leaf.F90 visit.f90 \

timer_c.o \

-o bin.scorep/clover_leaf

Score-P instrumenter options:

--compiler: source code routines (default)

--mpp=mpi: MPI determined by heuristics

--openacc: enable OpenACC

--cuda: enable CUDA

--user: enable Score-P user API (optional)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

 Hooking up the Score-P instrumenter scorep into complex build environments like Autotools or CMake was

always challenging

 Score-P provides convenience wrapper scripts to simplify this

 Autotools and CMake need the used compiler already in the configure step, but instrumentation should not

happen in this step only in the build step

 Allows to pass addition options to the Score-P instrumenter and the compiler via environment variables

without modifying Makefiles (SCOREP_WRAPPER_INSTRUMENTER_FLAGS & SCOREP_WRAPPER_COMPILER_FLAGS)

 Run scorep-wrapper --help for a detailed description and the available wrapper scripts of each Score-P

installation (depends on configured compilers)

1146TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% SCOREP_WRAPPER=off \

> cmake .. \

> -DCMAKE_C_COMPILER=scorep-icc \

> -DCMAKE_CXX_COMPILER=scorep-icpc \

> -DCMAKE_Fortran_COMPILER=scorep-ifort

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Measurement configuration: scorep-info

 Score-P measurements

are configured via

environmental variables

12

% scorep-info config-vars --full

SCOREP_ENABLE_PROFILING

Description: Enable profiling

[...]

SCOREP_ENABLE_TRACING

Description: Enable tracing

[...]

SCOREP_TOTAL_MEMORY

Description: Total memory in bytes for the measurement system

[...]

SCOREP_EXPERIMENT_DIRECTORY

Description: Name of the experiment directory

[...]

SCOREP_FILTERING_FILE

Description: A file name which contain the filter rules

[...]

SCOREP_METRIC_PAPI

Description: PAPI metric names to measure

[...]

SCOREP_METRIC_RUSAGE

Description: Resource usage metric names to measure

[...]

SCOREP_OPENACC_ENABLE

Description: OpenACC measurement features

[... More configuration variables ...]

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

Required for OpenACC measurements.

[yes|default] recommended to start.

Additional CUDA measurement optional.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P filtering

 Filtering by source file name

 All regions in files that are excluded by the filter are

ignored

 Filtering by region name

 All regions that are excluded by the filter are ignored

 Overruled by source file filter for excluded files

 Apply filter by

 exporting SCOREP_FILTERING_FILE environment

variable

 Apply filter at

 Run-time

 Compile-time (GCC-plugin and Intel only)

 Add cmd-line option --instrument-filter

 No overhead for filtered regions but recompilation

1346TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% cat ../config/scorep.filt

SCOREP_REGION_NAMES_BEGIN

EXCLUDE

binvcrhs*

matmul_sub*

matvec_sub*

exact_solution*

binvrhs*

lhs*init*

timer_*

SCOREP_REGION_NAMES_END

% export SCOREP_FILTERING_FILE=\

../config/scorep.filt

Region name
filter block

using wildcards

Apply filter

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Source file name filter block

1446TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

This is a comment

SCOREP_FILE_NAMES_BEGIN

by default, everything is included

EXCLUDE */foo/bar*

INCLUDE */filter_test.c

SCOREP_FILE_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END

 Define the source file name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated source file names

 Names can contain bash-like wildcards *, ?, []

 Unlike bash, * may match a string that contains slashes

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions in source files that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block

1546TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

This is a comment

SCOREP_REGION_NAMES_BEGIN

by default, everything is included

EXCLUDE *

INCLUDE bar foo

baz

main

SCOREP_REGION_NAMES_END

 Keywords

 Case-sensitive

 SCOREP_REGION_NAMES_BEGIN,

SCOREP_REGION_NAMES_END

 Define the region name filter block

 Block contains EXCLUDE, INCLUDE rules

 EXCLUDE, INCLUDE rules

 Followed by one or multiple white-space separated region names

 Names can contain bash-like wildcards *, ?, []

 EXCLUDE, INCLUDE rules are applied in sequential order

 Regions that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Region name filter block, mangling

1646TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

void bar(int* a) {

*a++;

}

int main() {

int i = 42;

bar(&i);

return 0;

}

 Name mangling

 Filtering based on names seen by the measurement

system

 Dependent on compiler

 Actual name may be mangled

 scorep-score names as starting point

(e.g. matvec_sub_)

 Use * for Fortran trailing underscore(s) for

portability

 Use ? and * as needed for full signatures or

overloading

 Use \ to escape special characters

filter bar:

for gcc-plugin, scorep-score

displays ‘void bar(int*)’,

other compilers may differ

SCOREP_REGION_NAMES_BEGIN

EXCLUDE void?bar(int?)

SCOREP_REGION_NAMES_END

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

New: generate initial filter file

1746TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% score-scorep --help

[…]

-g [<list>] Generation of an initial filter file with the name

'initial_scorep.filter'. A valid parameter list has the form

KEY=VALUE[,KEY=VALUE]*. By default, uses the following control

parameters:

`bufferpercent=1,timepervisit=1`

A region is included in the filter file (i.e., excluded from

measurement) if it matches all of the given conditions, with the

following keys:

- `bufferpercent` : estimated memory requirements exceed the

given threshold in percent of the total

estimated trace buffer requirements

- `bufferabsolute` : estimated memory requirements exceed

the given absolute threshold in MB

- `visits` : number of visits exceeds the given

threshold

[…]

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P:

Specialized Measurements and Analyses

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

 Can be used to partition application into coarse grain phases

 E.g., initialization, solver, & finalization

 Can be used to further subdivide functions

 E.g., multiple loops inside a function

 Enabled with --user flag to Score-P instrumenter

 Available for Fortran / C / C++

1946TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

 Requires processing by

the C preprocessor
 For most compilers, this can

be automatically achieved by

having an uppercase file

extension, e.g., main.F or

main.F90

20

#include "scorep/SCOREP_User.inc"

subroutine foo(…)

! Declarations

SCOREP_USER_REGION_DEFINE(solve)

! Some code…

SCOREP_USER_REGION_BEGIN(solve, “<solver>", \

SCOREP_USER_REGION_TYPE_LOOP)

do i=1,100

[...]

end do

SCOREP_USER_REGION_END(solve)

! Some more code…

end subroutine

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

21

#include "scorep/SCOREP_User.h"

void foo()

{

/* Declarations */

SCOREP_USER_REGION_DEFINE(solve)

/* Some code… */

SCOREP_USER_REGION_BEGIN(solve, “<solver>",

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

SCOREP_USER_REGION_END(solve)

/* Some more code… */

}

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

22

#include "scorep/SCOREP_User.h"

void foo()

{

// Declarations

// Some code…

{

SCOREP_USER_REGION(“<solver>",

SCOREP_USER_REGION_TYPE_LOOP)

for (i = 0; i < 100; i++)

{

[...]

}

}

// Some more code…

}

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

 Can be used to temporarily disable measurement for certain intervals
 Annotation macros ignored by default

 Enabled with --user flag

23

#include “scorep/SCOREP_User.inc”

subroutine foo(…)

! Some code…

SCOREP_RECORDING_OFF()

! Loop will not be measured

do i=1,100

[...]

end do

SCOREP_RECORDING_ON()

! Some more code…

end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {

/* Some code… */

SCOREP_RECORDING_OFF()

/* Loop will not be measured */

for (i = 0; i < 100; i++) {

[...]

}

SCOREP_RECORDING_ON()

/* Some more code… */

}

Fortran (requires C preprocessor) C / C++

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters

 Record metrics from PAPI:

 Use PAPI tools to get available metrics and valid combinations:

 Record metrics from Linux perf:

 Use the perf tool to get available metrics and valid combinations:

 Write your own metric plugin
 Repository of available plugins: https://github.com/score-p

24

% papi_avail

% papi_native_avail

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% export SCOREP_METRIC_PAPI=PAPI_TOT_CYC

% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% export SCOREP_METRIC_PERF=cpu-cycles

% export SCOREP_METRIC_PERF_PER_PROCESS=LLC-load-misses

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% perf list

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

 Record CUDA applications and device activities

 Record OpenCL applications and device activities

 Record OpenACC applications

 Can be combined with CUDA if it is a NVIDIA device

 Check scorep-info config-vars –full for a wide range of further options and default values

25

% export SCOREP_CUDA_ENABLE=runtime,kernel,idle

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% export SCOREP_OPENCL_ENABLE=api,kernel

% export SCOREP_OPENACC_ENABLE=yes

% export SCOREP_CUDA_ENABLE=kernel

Idle is an artificial region
defined as outside of

kernel time

Adding options will
increase overhead to a

varying degree

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

HIP/ROCm instrumentation

 Instrument with "scorep --hip" to ensure ROCm adapter is included
 alternatively SCOREP_WRAPPER_INSTRUMENTER_FLAGS="--hip …"

 For measurement execution set SCOREP_HIP_ENABLE
 api: all HIP API calls

 kernel: HIP kernels
 kernel_callsite: additional tracking of kernel callsites between launch and execution

 malloc: HIP-managed host and device allocations

 memcpy: H2D, D2H, H2H copies through HIP memcpy functions (not yet for D2D)

 sync: device/stream synchronization calls

 user: ROCTx support

 default/yes/1/true: all of the above

 none/no: disable feature

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 26

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

2846TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

Host-Device
memory
transfers

OpenACC
directives

CUDA API calls

Device activities

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

 Determine the maximum heap usage per process

 Find high frequent small allocation patterns

 Find memory leaks

 Support for:
 C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)

 Profile and trace generation (profile recommended)
 Memory leaks are recorded only in the profile

 Resulting traces are not supported by Scalasca yet

 Available since Score-P 2.0

2946TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% export SCOREP_MEMORY_RECORDING=true

% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

memory recording

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 30

Different maximum
heap usages per

ranks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 31

Memory leaksMemory leaks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

 Automatic compiler instrumentation greatly disturbs C++ applications because of

frequent/short function calls => Use sampling instead

 Novel combination of sampling events and instrumentation of MPI, OpenMP, …
 Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead) => Filtering not needed anymore

 Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

 Supports profile and trace generation

 Available since Score-P 2.0, only x86-64 supported currently

3246TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% export SCOREP_ENABLE_UNWINDING=true

% # use the default sampling frequency

% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

 Set new configuration

variable to enable

sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

46TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024) 33

Less disturbed
measurement

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Enables users to install library wrappers for any C/C++ library

 Intercept calls to a library API
 no need to either build the library with Score-P or add manual instrumentation to the application

using the library

 no need to access the source code of the library, header and library files suffice

 Score-P needs to be executed with --libwrap=…

 Execute scorep-libwrap-init for directions:

3446TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

Step 1: Initialize the working directory

Step 2: Add library headers

Step 3: Create a simple example application

Step 4: Further configure the build parameters

Step 5: Build the wrapper

Step 6: Verify the wrapper

Step 7: Install the wrapper

Step 8: Verify the installed wrapper Step 9: Use the wrapper

Only once Often

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 Generate your own library wrappers by telling scorep-libwrap-init how you would

compile and link an application, e.g. using FFTW

 Generate and build wrapper

3546TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

% scorep-libwrap-init \

> –-name=fftw \

> --prefix=$PREFIX \

> -x c \

> --cppflags=“-O3 -DNDEBUG -openmp -I$FFTW_INC“ \

> --ldflags=“-L$FFTW_LIB“ \

> --libs=“-lfftw3f -lfftw3“ \

> working_directory

% cd working_directory

% ls # (Check README.md for instructions)

% make # Generate and build wrapper

% make check # See if header analysis matches symbols

% make install #

% make installcheck # More checks: Linking etc.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

 MPI + OpenMP

 Calls to FFTW library

3646TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

 Community instrumentation & measurement infrastructure

 Instrumentation (various methods) and sampling

 Basic and advanced profile generation

 Event trace recording

 Available under 3-clause BSD open-source license

 Documentation & Sources:

 http://www.score-p.org

 User guide also part of installation:

 <prefix>/share/doc/scorep/{pdf,html}/

 Support and feedback: support@score-p.org

 Subscribe to news@score-p.org, to be up to date

3746TH VI-HPS TUNING WORKSHOP (IT4I, 4-6 SEPT 2024)

