
EU H2020 Centre of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

POP assessments with BSC tools
Judit Gimenez (judit@bsc.es)

Insights on a MPI study

2

• Name of the code: PORTA

• Programming: C; MPI (+POSIX threads)

• Scale (#cores): 141, 281, 561, 1121, 2241 (weak scaling)

• Platform: BSC MareNostrum4 (node=2 Intel Xeon Platinum 8160 24C @2.1 GHz)

3

MPI study: background & FoA

Duration of the computing regions

MPI calls

With the small input (W1) the
granularity of the main computations
are in the range of 70-90 milliseconds
(large computation 8 sec.)

Communications using both
synchronous and asynchronous calls
and ranks are globally synchronized
with an MPI_Allreduce

4

Code scaling

All the timelines (right) have the scale of W5
• Up to W3 the scaling is good.
• W4 and W5 show an increase of the unbalance and

a bad scaling of the large computing phase.
• Large computation (orange regions) have severe

scaling problems

W1

W2

W4

W1

W5

W3

• Efficiencies lower than 80% indicate space for improvement. Lower than 60% there is a clear need for
improvement.

• The average IPC is 2.03 that is a good value for MN4 where frequently is limited to 1.2-1.5
5

Efficiency model analysis

• The scaling of the code is
limited by:
• An increase in the total

number of instructions
(code replication).

• Serialization and
dependencies.

• The main degradation for
W1 is due to global load
balance despite the
efficiency is still very good.

• Tracking the evolution of the
clusters we can see that:
• Clusters 1 and 2 only increase

the number of instructions (per
instance) for the configurations
that increase number of
frequencies per rank.

• The number of grid points
increases the number of
invocations of the clusters

• The variability on instructions for
cluster 1 increases drastically in
W5.

6

Computations scaling

7

MPI waiting time

• Most of the MPI waiting time for MPI_Recv and MPI_Allreduce is
concentrated in 3 regions

Part of it is reported as global
unbalance, but also as
serialization (compensated
unbalances in MPI_Recv)

W1

8

Improved version (few months later)
FOA first Audit

FOA Follow on Audit

The improved code reduces 7% the
iteration (smallest scale).
• Refactoring large computation
• Reduce code replication

Comparing the scaling efficiency and elapsed time with
respect to the previous version

• The scaling (left) has been improved in average an
8% that goes up to 16% with W5

• The iteration time (right) has been reduced in
average a 12% (close to 20% with W5)

• Efficiencies lower than 80% indicate space for improvement. Lower than 60% there is a clear need for
improvement.

• The average IPC is 1.96 (previously 2.03) 9

Efficiency model analysis
• The scaling of the code has

been improved significantly
by reducing the code
replication (W5: instruction
scaling from 71.76 to 86.39)

• The parallel efficiency reports
very similar values (W5: 72.48
vs. 73.38)
• Comm. eff. improves

(83.67 → 88.99)
• LB eff degrades (86.62 →

82.45)

Insights on an OpenMP study

10

• Name of the code: Explorer

• Programming: C++; MPI, OpenMP

• Scale (#cores): 1 MPI rank scaling OpenMP (4 , 24, 48)

• Platform: BSC MareNostrum4 (node=2 Intel Xeon Platinum 8160 24C @2.1 GHz)

11

OpenMP study: background and FoA

OpenMP parallel functions

User events

The OpenMP parallel function
reflects the application structure
with the phases defined by the
user events

12

Code scaling

The OpenMP scaling is poor. With 24 processes the efficiency is 49% (2.95x with 6x more
resources). Doubling to 48 there is a very small time reduction (efficiency is only 28% of an
ideal scaling).

• Efficiencies lower than 80% indicate space for improvement. Lower than 60% there is a clear
need for improvement.

• The average IPC is 1.14 with 4 threads and it significantly decreases. That seems to indicate
the problem can be related with the accesses to the shared memory and/or with the
frequent calls to the OpenMP runtime.

13

Efficiency model analysis

• The scaling of the code is limited
mainly by:
• A drastic reduction of the IPC
• An increase of the load

unbalance
• The main degradation with 4

threads is due to time inside the
OpenMP runtime (Comm. Eff.)

14

IPC degradation analysis

(left) All timelines are in the same color scale.
The timelines show that the IPC reduction is
on the computation of almost all the phases.

(right) Only the pink and red parallel functions
maintain an acceptable IPC. The brown one
has a very low IPC for all the runs but also
suffers the biggest reduction with the scale.

15

Parallel functions computations
The average row reflects the %time
outside the OpenMP runtime

→Values lower than 0.7 indicate a high
OpenMP overhead.

→With 24 and 48 threads all functions
have a high OpenMP overhead (the
brown one has a high value because
computations do not scale).

The Avg/Max reflects the load balance

→ Values lower than 0.8 indicate the
balance need to be improved.

→ The unbalance with 24 and 48 is
concentrated the pink and red parallel
functions.The average metric is pointing that the application

has a very fine granularity.

• The average IPC is in the range
0.69 - 0.72. Being still low, but
an improvement w.r.t. the
default scheduling (0.61)

16

Efficiency model – OpenMP sched.

• All configurations (24 threads)
are very similar and improve
the default (parallel efficiency =
66.9%)

• The application was using the default scheduling
(dynamic with chunk size = 1)

staticdynamic, 1000

Insights on a MPI + CUDA study

17

• Name of the code: Tsunami-HySEA

• Programming: C++; MPI, CUDA

• Scale: from 1 MPI rank + 1 GPU to 64 MPI ranks + 64 GPUs

• Platform: BSC CTE Power (first 2 studies) and Leonardo (last study)

MPI + CUDA: background and FoA

300 iterations Zoom in few iterations

Computations

MPI calls

CUDA runtime

18

• Time scalability of the FOA with respect to linear scaling

19

Scalability

The execution with 1 MPI + 1 GPU was
discarded for the analysis because a significant
different behaviour of the MPI task.

With 16 MPI + 16 CUDA the speed-up is 64%
of lineal scaling.

With 64 MPI + 64 CUDA the speed-up goes
down to 35%.

• Mainly communications but also computations limit the code scalability

• The reference run with 4 MPI + 4 GPUs already reports poor efficiency

• Load balance is poor in all the configurations but there is limited degradation
with the scale

• No counters available at GPUs to compute IPC and Instructions scaling factors

20

Efficiency model

4 8 16 24 32 48 64

Global efficiency 65.23 55.25 41.90 36.41 32.05 26.52 23.40

Parallel efficiency 65.23 64.32 48.9 44.79 41.7 36.53 33.94

Load Balance 72.57 77.79 67.41 67.86 68.15 64.92 64.67

Communication eff. 89.88 82.68 72.54 66.01 61.19 56.27 52.47

Computation scalability 100.00 85.89 85.69 81.30 76.87 72.60 68.94

21

Efficiency model

CUDA component

Computations scaling

MPI component

• Big impact from MPI and CUDA components.

• MPI flat behaviour except with 8 ranks

• Scaling of one iteration (MPI processes only)

22

Load balance and data transfer

With instantaneous communications most of the point to
point calls disappear and the allreduce increases a bit →
data transferred in point to point is limited by network
resources

Parallel efficiency 65%, Load Balance 76% , Comm. 85% Serialization 99%, Transfer 84%

23

Code scaling (v1 vs. v2)

• The scaling is improved an average of 30% (40%
for the runs of at least 4 nodes).

• Main improvements (previous audit suggestions):

• Overlap MPI point to point calls with the
kernels execution.

• Improve balance between MPI ranks

24

Efficiency model (all resources vs gpus)

Programing model contribution

25

• Bigger impact from CUDA component with a similar contribution in all the scales

• MPI contribution increases with the scale, but still lower than CUDA

26

Quick validation of a bottleneck

• Discussing the analysis with the code developers allowed to identify a
performance problem with a CUDA reduction phase.

27

FOA of 2023 version

Computations

MPI calls

CUDA runtime

Focusing on 30
iterations and 4 GPUs
we can already see:

• the weight of MPI is

quite small (less than
1%)

• CPUs spend most of
the time in the
cudaMemcpy call
(over 99%)

• GPUs are executing
kernels most of the
time (94%)CUDA kernel

• Time scalability of the FOA with respect to linear scaling

28

Scalability

The application reports a good scaling up to 64
GPUs. In fact without instrumentation the user
reports a little bit better scaling that is
included in the plot and goes to 57.4 with 64
GPUs.
With 16 GPUs the speed-up is 96% of lineal
scaling. With 32GPUs is 91%. With the largest
scale of 64 GPUs the efficiency is 83%.

As reference of the code improvement, in the previous POP assessment in Nov’20 (for a
different input case and configuration) the scaling efficiency with 64 GPUs was just over 50%.

• Based on the low contribution of the CPUs, the efficiency analysis is focused on
the GPUs including the global parallel efficiency and load balance as reference.

• Considering all the resources allocated, the efficiencies are around 40-50%
because the work is concentrated in the GPUs (reported as unbalance). The small
degradation in the parallel efficiency is also observed in the GPUs metrics.

• The GPUs global efficiency reports a degradation with the scale that is related
mainly with the communication efficiency but also with the computation
scalability. The load balance between GPUs is ok for all the scales.

• No counters available at GPUs to compute IPC and Instructions scaling factors.
29

Efficiency model

30

GPU idling time vs. CPU activity

• Comparing 4 GPUs (up) and 64 GPUs (down)

When scaling the biggest increases are related with cudaMemcpy and MPI_Allreduce.

The MPI_Allreduce has a better balance with 64 MPI ranks → increase due to date transfer

31

CUDA Kernels – scaling efficiency

• Top 11 kernels (>=4% execution time with 64 GPUs)

Eliminating the 4 kernels mentioned in the
previous slide we can see that 10 kernels
have a very good scaling efficiency
between 0.94 and 0.98

Only the last kernel in the list that
represents a 4.89% has a bigger
degradation but still is 0.87 with 64 GPUs.

32

CUDA Kernels – load balance

• 64 GPUs

A load balance bigger than 0.8 can
be considered good. There are 3
kernels with a load balance lower
than 0.8.

The lowest load balance is 0.7 for
obtenerEstadoYDeltaTVolumenesNivelGPU

that represents 9% of the execution
time. The other 2 kernels with low
value represent less than 5% each.

9/3/2024 33

Contact:
 https://www.pop-coe.eu
 pop@bsc.es
 @POP_HPC
 youtube.com/POPHPC

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101143931. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and Spain, Germany, France, Portugal and the Czech Republic.

Performance Optimisation and Productivity 3
A Centre of Excellence in HPC

	Slide 1
	Slide 2: Insights on a MPI study
	Slide 3: MPI study: background & FoA
	Slide 4: Code scaling
	Slide 5: Efficiency model analysis
	Slide 6: Computations scaling
	Slide 7: MPI waiting time
	Slide 8: Improved version (few months later)
	Slide 9: Efficiency model analysis
	Slide 10: Insights on an OpenMP study
	Slide 11: OpenMP study: background and FoA
	Slide 12: Code scaling
	Slide 13: Efficiency model analysis
	Slide 14: IPC degradation analysis
	Slide 15: Parallel functions computations
	Slide 16: Efficiency model – OpenMP sched.
	Slide 17: Insights on a MPI + CUDA study
	Slide 18: MPI + CUDA: background and FoA
	Slide 19: Scalability
	Slide 20: Efficiency model
	Slide 21: Efficiency model
	Slide 22: Load balance and data transfer
	Slide 23: Code scaling (v1 vs. v2)
	Slide 24: Efficiency model (all resources vs gpus)
	Slide 25: Programing model contribution
	Slide 26: Quick validation of a bottleneck
	Slide 27: FOA of 2023 version
	Slide 28: Scalability
	Slide 29: Efficiency model
	Slide 30: GPU idling time vs. CPU activity
	Slide 31: CUDA Kernels – scaling efficiency
	Slide 32: CUDA Kernels – load balance
	Slide 33: Contact: https://www.pop-coe.eu pop@bsc.es @POP_HPC youtube.com/POPHPC

