VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

ACCESSING AND USING IT4I CLUSTERS | KAROLINA

Ondrej Meca

IT4Innovations

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

IT4I CLUSTERS

Karolina, GPU partition - Apollo 6500, AMD EPYC 7452 32C 2.35GHz, NVIDIA A100 SXM4 40 GB, Infiniband HDR200

IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava, Czechia

is ranked
No. 15

among the World's TOP500 Supercomputers

in the Green500 List published at the ISC Virtual 2021 Conference on June 28, 2021.

Congratulations from the Green500 Editors

Kirk Cameron Virginia Tech

KAROLINA CLUSTER

Universal partition: 720 compute nodes

- 2x 64-core AMD EPYC 7H12 @ 2.6 GHz
- 256 GB of memory
- 346 GB/s memory bandwidth, 5.3 Tflop/s per node
- 3.8 Pflop/s peak total
- 100 Gb/s NIC (infiniband HDR100)

GPU-accelerated partition: 72 compute nodes

- **2x 64-core** AMD EPYC 7763 @ 2.45 GHz
- 1024 GB of memory
- 8x NVIDIA A100 SXM4 40GB
- 12.4 TB/s memory bandwidth, 156 Tflop/s per node
- Total 11.1 Pflop/s peak
- 4x 200 Gb/s NIC

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY OF OSTRAVA | CENTER

How to connect to Karolina

SSH server

SSH client

connect via ssh protocol

Connect from your computer to Karolina

- SSH server on Karolina
- SSH client on your computer
- like remote desktop, but command-line interface only

SSH

connect and do work

SCP

• copy files between Karolina and your computer

SUPERCOMPLITING

SSH keys for authentication

- Private-public key pair
- Password auth. is disabled on Karolina

Examine the .ssh directory

- /home/<username>/.ssh
- C:/Users/<username>/.ssh
- Create the directory if it does not exist

Are there id_rsa and id_rsa.pub files?

• This is the private and public key

No there aren't / Yes there are, but I want to generate new keys

- Open command line / terminal / powershell
- Run ssh-keygen
- Follow the instructions

- 1. Upload your public ssh key
- 2. <u>https://extranet.it4i.cz/ssp</u>
- 3. Choose SSH Key option in the top menu
- 4. Use the login and password you received
- 5. Paste the contents of your public ssh key
 - ~/.ssh/id_rsa.pub

Command line:

- all Linux systems (incl. MacOS)
- newer Windows versions

Connect

• \$ ssh -i ~/.ssh/id_rsa username@karolina.it4i.cz

Сору

• \$ scp -i ~/.ssh/id_rsa local_file username@karolina.it4i.cz:path/on/karolina

PuTTY, WinSCP

- SSH and SCP clients for Windows
- <u>https://docs.it4i.cz/general/accessing-the-clusters/shell-access-and-data-transfer/putty/</u>

DO NOT CTRL+C, CTRL-V

SOME CHARACTERS CAN BE INCORRECTLY COPIED

Command line:

- all Linux systems (incl. MacOS)
- newer Windows versions

Connect

• \$ ssh karolina

Сору

• \$ scp local_file karolina:path/on/karolina

~/.ssh/config

host karolina
HostName karolina.it4i.cz
IdentityFile ~/.ssh/id_rsa
User username

PuTTY, WinSCP

- SSH and SCP clients for Windows
- <u>https://docs.it4i.cz/general/accessing-the-clusters/shell-access-and-data-transfer/putty/</u>

KAROLINA

Login nodes

- program preparation
- job submission

Compute nodes (720 CPU nodes, 72 GPU nodes)

• job execution

Shared filesystem

- code
- job inputs and outputs
- shared between login and compute nodes

VSB TECHNICAL | IT4INNOVATIONS |||| OF OSTRAVA | CENTER

KAROLINA FILESYSTEM

HOME workspace (NFS)

- Located at ~ (your home directory)
- Limited size (~25 GiB), quite slow (2-3 GiB/s)
- Use for config files, build artifacts, source code repositories

PROJECT workspace (GPFS)

- Very large (~15 PiB), rather slow (40 GiB/s)
- Each project has its own directory (deleted after project ends)
- Central storage for all project data, use for important data
- \$ it4i-get-project-dir <project-id>

SCRATCH workspace (Lustre)

- Located at /scratch/project/<project-id>, no backup
- Large (~20 TiB), very fast (1 TiB/s)
- Use for reading job inputs and writing job results
- Copy results to HOME or PROJECT after the job ends
- Files are deleted after 90 days of inactivity!

How to work on Karolina

MODULES

Each IT4I cluster has its own set of pre-installed modules available for immediate use

Module

- is a set of binaries, libraries, header files, ...
- has a set of modules that it depends on
- might have several available versions (Python/2.7.9 vs Python/3.6.1)
- might have a specific toolchain (GCC vs Intel toolchain)

To use a module, you must load it

- loading a module modifies environment variables (PATH, LIBRARY_PATH, LD_LIBRARY_PATH)
- this enables executing module binaries and linking to module libraries

Lmod is used to load modules

You can also create your own modules or ask support to install new modules for you Modules are defined using EasyBuild

If you find a module that is not working, contact support

MODULES

Useful hints

- Always load specific versions of modules to avoid surprises
 - ml GCC/6.3.0(OK)
 - m1 GCC (avoid loading of default module)
- Module load order matters (because of conflicting dependencies)
 - ml A B might produce different results than ml B A
- Filtering modules
 - ml spider <package>
 - ml command also provides tab completion
- ml command is case sensitive
- match module toolchains (GCC vs Intel)
- do not forget to load the correct modules in your job script!

show available modules
\$ ml av

load a module with its dependencies
\$ module load Python/3.6.8

list loaded modules

\$ module list Currently loaded modules: 1) GCC/6.3.0 2) Python/3.6.8 \$ python --version Python 3.6.8

unload all loaded modules
\$ ml purge
\$ python --version
Python 2.7.5

COMPUTATIONAL PROJECT

Choose the correct computational project for your experiment

Check status of the cluster

• <u>https://extranet.it4i.cz/rsweb/karolina</u>

Check how much core hours are left in the project

- https://scs.it4i.cz/
- \$ it4ifree

Projects I am participating in									
======================================	Resource type	== Days left	Total	Used	By me	Free			
DD-24-74	Karolina CPU Karolina GPU	16 16	1000 200	30 12	0 0	970 188			
Legend ===== N/A =	Legend ====== N/A = No one used this resource vet								
Legacy Norm Everything	alized core hours else is in Node H	are in NCH Lours							

IT4	In	nc	v	at	io	ns	5	Ka	ar	oli	in	a													Cor	mpsy	/S	Barbo	ra
Clust	er	Q	ueu	ies		Job	s	N	ode	s	J	obs	Σ		Nod	les 1	Σ	Pr	oje	cts	I	Res	erva	atio	ns		Lice	nses	
Mv cl	uste	r	M	ν αι	Jeu	es		/lv i	obs		M٧	/ iot	os e	stim	natio	on	N	/lv ic	bs	Σ									
											,	1																	
	Allo	catio	n	L	.oad			CPU		Lo	ad C	CPU		Analy	ysis		Cus	tom											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	9 30
cn																							1						
31			2			-		2	2		2		-		2	-	2					_	4	_					
61		-	2	-	-	2	2	2	2		2	-		-	2	2	2	-			-	-	+	-					
121	-	-	2	=	-	2	-	2	-	-	-	-	-	-	-	-	-	-			-	-	÷	-		-			
151	-	-	-	-	-	ī	ī	ī	ī	-	ī	ī	Ξ	Ξ	ī	ī	ī	ī	ī	=		H	÷	H		ī			
181	ē	ē	ē	ē	ē	ē	ī	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ī	ē			ī	T		ē	ē	ē	ī	
211	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē							ē			
241																													
271																						1	4						
301				2	2	2		2	2		2	2					2					4	4	4	2				
331		-	2	-	-	-	-	2	-		2	-		-	-	-	-	-			-	-	+	-					
301	=	-	2	-	-	2	2	-	-	-	=	-	-	-	-		2	=			-	-	÷	-		2			
421	ī	ī	Ξ	Ξ	-	-	-	-	-	-	Ξ	Ξ	Ξ	Ξ	Ξ	ī	-	-	-		H	H	÷	H	-	-			
451	-	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	ī	-				T	Ť	-1	ī	ī			
481	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē						ē	ē	ē	Ō	
511																													
541																													
571																													
601		-							-		2			2	2	2	2	-				_	_	_					
661	-	-													-		-				-	-	÷	-					
691	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	-	-	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	-							-			
acn	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē	ē						ē	ē		ē	
31																													
61																													
sdf		_																											
viz																													
	•	•	•	•		•	•	•	•		•	•	•		•		•												
	Fre	109	203	309	409	509	603	709	803	909	Ξ	Exc	Re	Dra	Dra	Do	Not												
	æ	6	6	e.	6	6	6	6	6	6	_	lusiv	serva	ining	ined	N	resp												
												æ	tion	-			ondir												
5	Slurm	data	a refr	resh	ed 2	024-	08-1	5 10	:22:5	57							Ð												
User:	AL					~	Pro	iect:	AL	L			~	Oue	eue:	AL	L				•	nfo							
(,		<u> </u>	-							_												

VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

AVAILABLE QUEUES

Each IT4I cluster is shared by many users

To perform a computation (a job), you must go through a queue

• We use a queuing system called Slurm (<u>https://slurm.schedmd.com/documentation.html</u>)

There are several queues with different properties

- **qcpu_exp**, **qgpu_exp** (quick experiments, do not charge for use, up to 2 nodes and 1-hour jobs)
- qcpu (common computations, up to 720 nodes and 2-day jobs)
- qgpu (common computations, up to 72 nodes and 2-day jobs)
- **qcpu_long** (long-running computations, up to 200 nodes and 6-days jobs)
- **qfat** (fat node 768 cores, 24 TiB RAM)
- You can find the complete queue list here: <u>https://docs.it4i.cz/general/karolina-partitions/</u>

To access most queues, you will need to specify a computational project that you are a part of

- Computational resources that you spend are deducted from the used project
- You can use the **qcpu_free** and **qgpu_free** up to 150% of the project resources

SLURM PARAMETERS

You can submit jobs on the cluster in two modes

- batch mode (sbatch)
 - you specify a script which is executed once you get to the front of a queue
- interactive mode (salloc)
 - your terminal will be connected to the first computing node in the job via SSH

You can have multiple jobs in the queue at once (both waiting and executing) Be careful with walltime to avoid wasting project resources!

You must give basic parameters to define a job:

- -N, --nodes number of nodes
- -n, --ntasks number of tasks (MPI processes)
- -c, --cpus-per-task number of threads per MPI process
- -p, --partition requested queue
- -t, --time
- -A, --account
- -J, --job-name
- -G, --gpus

account number (e.g., DD-24-74) name of your job

walltime for your job

- number of required G
 - number of required GPUs

SUBMIT YOUR JOB

You can submit jobs on the cluster in two modes

- batch mode (sbatch)
 - you specify a script which is executed once you get to the front of a queue
- interactive mode (salloc)
 - your terminal will be connected to the first computing node in the job via SSH

\$ salloc -A DD-24-74 -p qcpu_exp -N 2 -n 256 -t 00:05:00
salloc: Granted job allocation 1493151
salloc: Waiting for resource configuration
salloc: Nodes cn[160-161] are ready for job
\$ ml OpenMPI/4.1.4-GCC-11.3.0
\$ srun hostname | sort | uniq -c
 128 cn160.karolina.it4i.cz
 128 cn161.karolina.it4i.cz

Run interactive job using 2 nodes (160,161)

• 128 cores per node (256 cores total)

#!/usr/bin/bash					
#SBATCHjob-name TEST					
#SBATCHaccount DD-24-74					
#SBATCHpartition qcpu_exp					
#SBATCHnodes 2					
#SBATCHntasks-per-node 128					
#SBATCHtime 00:05:00					
ml purge ml OpenMPI/4.1.4-GCC-11.3.0					
srun hostname sort uniq -c					

sbatch script.sh
... wait for completion ...
cat slurm-<JOB-ID>.out

SLURM UTILITIES

Starting jobs:

- salloc -A PROJECT-ID -p qcpu -N 4 -n 128 -c 4 -t 2:00:00
- sbatch -A PROJECT-ID script.sh

Start the job (use srun instead of mpirun!):

• srun -n 128 ./app

Get info about queued jobs:

• squeue --me

Job canceling:

• scancel JOBID

Informations about nodes and partitions:

• sinfo

Once the job gets to the front of the queue

- 1. Slurm will allocate the specified number of nodes
- 2. The specified script will be executed
 - on the first allocated node
 - in submit directory
 - with all loaded modules before submitting (hence, purge modules in your script)
- 3. Once your script finishes, the job will also end
- 4. stdout and stderr of your script will be written to a file on the shared filesystem
 - slurm-<JOB-ID>.out
 - they will be stored in the directory where you submit the job
 - You can override this location with -o and -e

Useful environment variables available during a job

- SLURM_JOB_ID job id of the execution job
- SLURM_JOB_NUM_NODES number of nodes allocated to the job
- SLURM_JOB_NODELIST nodes allocated to the job

MONITORING JOB STATUS

Once your job starts running, you can observe its status in several ways

- \$ squeue --me
- Displays status of my queues, elapsed time, allocated computing nodes
- You can connect to the individual computing nodes via SSH to inspect them

[mec059@lo Submitted	gin2.kard batch job	olina 01_he o 1143932	llo]\$ sba	tch run.	slurm			
[mec059@lo	gin2.kard	olina 01_he	llo]\$ squ	eueme				
	JOBID	PARTITION	NAME	USER	ST	TIME	NODES	NODELIST(REASON)
	1143920	qcpu_exp	zphpc01	mec059	CD	0:03	1	cn553
	1143922	qcpu_exp	zphpc01	mec059	F	0:04	1	(NonZeroExitCode)
	1143932	qcpu_exp	zphpc01	mec059	R	0:04	1	cn147
[mec059@lo	gin2.kard	olina 01_he	llo]\$ ssh	cn147				
[mec059@lo	gin2.kar	olina 01_he	llo]\$ hto	р				

When something goes wrong you can delete jobs (both running and enqueued)

• \$ scancel <JOBID>

How to run GUI applications

- 1. **VNC** server on a Karolina login node + client on laptop
 - How to? <u>https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/</u>
 - Recommended client <u>https://www.realvnc.com/en/connect/download/viewer/</u>
- 2. OOD Open OnDemand GUI via web browser, IT4I VPN required
 - How to? <u>https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/ood/</u>
 - Connection link <u>https://ood-karolina.it4i.cz/</u>
- 3. X11 Log in via terminal with X-Window system enabled
 - How to? <u>https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/x-window-system/</u>
 - Usually worse UX for GUI apps due to network latency

GUI applications via VNC

- <u>https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/</u>
- 1. Connect to a login node
 - ssh, putty
- 2. Set VNC password
 - \$ vncpasswd
- 3. Check available ports
 - \$ ps aux | grep Xvnc | sed -rn 's/(\s) .*Xvnc (\:[0-9]+) .*/\1 \2/p'
- 4. Start VNC server on an available port
 - \$ vncserver :61 -geometry 1600x900 -depth 16
- 5. Open the tunnel on your laptop
 - \$ ssh -TN -f username@login2.karolina.it4i.cz -L 5961:localhost:5961
- 6. Start VNC viewer on your laptop
 - e.g., TigerVNC

DO NOT CTRL+C, CTRL-V

SOME CHARACTERS CAN BE INCORRECTLY COPIED

PuTTY, WinSCP

- Use PuTTy to create the tunnel
- add port forwarding to VNC server

/NC server: 127.0	.0.1:5961		
Options	Load	Save As.	
)	
About	ſ	Cancel	Connect /-
About		Cancel	Connect /-

	LOGIN	COMPUTE NODE
Connect to a login node ssh, putty	Check ports \$ netstat -natp grep 5961 \$ vncserverlist e.g., on login 1 \$ vncserver :61 -geometry 1600x900 -depth 16	
Open the tunnel ssh -TN -f username@login1.karolina.it4i.cz -L 5961:localhost:5961	do not forget to kill the server \$ vncserver -kill :61	
Start VNC client with port 5961		DO NOT CIKL+C, CIRL-V

SOME CHARACTERS CAN BE INCORRECTLY COPIED

| IT4INNOVATIONS

CENTER

NATIONAL SUPERCOMPUTING

VSB TECHNICAL

UNIVERSITY OF OSTRAVA

http://localhost:8888/lab?token=....

	LOGIN	COMPUTE NODE
Connect to a login node ssh, putty	e.g., on login 1 \$ ml Anaconda3 \$ ml jupyter-lab check port, where run the server, e.g., 8888 copy http address http://localhost:8888/lab?token=	
Open the tunnel ssh -TN -f username@login1.karolina.it4i.cz -L		
8888:localhost:8888		DO NOT CTRI +C. CTRI -V
Start Jupyter-lab in the browser:		

SOME CHARACTERS CAN BE INCORRECTLY COPIED

IT4INNOVATIONS

CENTER

NATIONAL SUPERCOMPUTING

VSB TECHNICAL

UNIVERSITY

OSTRAVA

How to run your job efficiently (mapping, pinning)

INTERACTIVE JOB EXECUTION

Threaded application on a single node (OpenMP):

- \$ salloc -N 1 -n 1 ...
- \$ OMP_NUM_THREADS=128 srun -n 1 ./app

Pure MPI application on several nodes:

- \$ salloc -N 4 -n 512 ...
- \$ srun -n 512 ./app

Hybrid application on several nodes (MPI+OpenMP):

- \$ salloc -N 4 -n 512 ...
- \$ OMP_NUM_THREADS=4 srun -n 128 ./app

INTERACTIVE JOB EXECUTION

Pure MPI application:

- \$ salloc -N 1 -n 128 ...
- \$ srun -n 128 ./app

MPI+OpenMP application:

NA

120W - 280W

- \$ salloc -N 1 -n 128 ...
- \$ OMP_NUM_THREADS=4 srun -n 32 ./app

NA

120W - 280W

	Kard	olina	CATEGORY	EPYC 7002 (Rome)	EPYC 7003 (Milan)
7nm 3 RD GEN 7nm 7003 "Milan" 64C /128T 7002 "Zen3" cores	7.0.00	Socket	SP3	SP3	
	Core / Process	Zen2 / 7nm	Zen3 / 7nm		
	Max Core Count / Threads	64 / 128	64 / 128		
	2 [№] GEN 7002	64C /128T "Zen3" cores	L3 Cache Size	256 MB	256 MB
1 st GEN	64C /128T	PCle® Gen4 DDR4 - 3200	CCX Arch	4 Cores + 16MB	8 Cores + 32MB
7001 32C /64T "Zen" cores PCIe ^e Gen3 DDR4 – 2667	"Zen2" cores PCIe [®] Gen4 DDR4 – 3200		Memory	8 Ch DDR4-3200, NVDIMM-N	8 Ch DDR4-3200, NVDIMM-N
	CPU nodes	GPU nodes	PCIe Tech & Lane Count	PCIe Gen4, 128L/Socket	PCIe Gen4, 128L/Socket
			Security	SME, SEV	SME, SEV, SNP

Chipset

Power

Pure MPI application:

- \$ salloc -N 1 -n 128 ...
- \$ srun -n 128 ./app

MPI+OpenMP application:

- \$ salloc -N 1 -n 128 ...
- \$ OMP_NUM_THREADS=4 srun -n 32 ./app

Is it the best possible setting?

I have a simple application:

- Karolina supercomputer
- compile with OpenMPI: mpic++ -fopenmp -O3 -march=native app.cpp -o app
- test with different number of MPI processors up to 128
- salloc -p qcpu_exp -N 1
- export OMP_NUM_THREADS=1
- srun -n 8 ./app 39.66s
- srun -n 16 ./app 17.46s
- srun -n 32 ./app 11.87s
- srun -n 64 ./app 7.31s
- srun -n 128 ./app 5.56s

I have a simple application:

- Karolina supercomputer
- compile with OpenMPI: mpic++ -fopenmp -O3 -march=native app.cpp -o app
- test with different number of MPI processors up to 128
- salloc -p qcpu_exp -N 1
- export OMP_NUM_THREADS=1
- srun -n 8 ./app 39.66s
- srun -n 16 ./app 17.46s
- srun -n 32 ./app 11.87s
- srun -n 64 ./app 7.31s
- srun -n 128 ./app 5.56s

What Is it the best possible setting?

Why app does not scale well?

Mapping:

2 12

- specifies how the software components are mapped to a given hardware Pinning, binding:
- deny migration of threads and processes to another resources ٠

	0	1	2	3	4	5	6	7
0	10	12	12	12	32	32	32	32
1	12	10	12	12	32	32	32	32
2	12	12	10	12	32	32	32	32
3	12	12	12	10	32	32	32	32
4	32	32	32	32	10	12	12	12
5	32	32	32	32	12	10	12	12
6	32	32	32	32	12	12	10	12
7	32	32	32	32	12	12	12	10

VSB TECHNICAL IT4INNOVATIONS UNIVERSITY NATIONAL SUPERCOMPUTING **OF OSTRAVA** CENTER

Intel-MPI (environment variables)

- KMP_AFFINITY
- I_MPI_PIN_DOMAIN
- <u>https://www.intel.com/content/www/us/en/docs/mpi-library/developer-reference-linux/2021-</u> 8/interoperability-with-openmp-api.html

OpenMPI (arguments of mpirun)

- --bind-to <hwthread, core, socket, numa, ...>
- --map-by <hwthread, core, socket, numa, ...>
- --report-bindings
- <u>https://www.open-mpi.org/doc/v4.0/man1/mpirun.1.php</u>

Slurm:

- --cpu-bind={sockets,ldoms,cores}
- -c, --cpus-per-task=<ncpus>

I have a simple application:

- Karolina supercomputer
- compile with OpenMPI: mpic++ -fopenmp -O3 -march=native app.cpp -o app
- test with different number of MPI processors up to 128
- salloc -p qcpu_exp -N 1
- export OMP_NUM_THREADS=1
- srun -n 8 ./app 39.66s srun -n 8 -c 16 ./app 7.11s
- srun -n 16 ./app 17.46s srun -n 16 -c 8 ./app 5.21s
- srun -n 32 ./app 11.87s srun -n 32 -c 4 ./app 5.08s (9% better)
- srun -n 64 ./app 7.31s srun -n 64 -c 2 ./app 5.31s
- srun -n 128 ./app 5.56s srun -n 128 -c 1 ./app 5.56s

Memory bound application

- Number of MPI processes / thread equal to memory channels
- Correct pinning to NUMA domains (sockets, chiplets)

Compute bound application

• As many MPI processes / threads as possible

- Test performance for different number of cores per node:
 - 16, 32, 64, 128 cores per node
- Test different mapping / pinning options
 - close, spread

GOMP_CPU_AFFINITY	0-127:32	0-127:16	0-127:8	0-127:4	0-127:2	0-127:1
# of active CPU cores	4	8	16	32	64	128
Max bandwidth [GB/s]	153,1	307,3	338,6	326,9	310,8	297,9
Efficiency	45,2%	90,8%	100,0%	96,6%	91,8%	88,0%

More advanced binding (e.g., run on cpus as close to GPUs as possible)

• GPUs are connected to NUMA domains 1, 3, 5, 7 (each of those NUMA domains have 2 GPUs)

srun -n 4 --cpu-bind=mask_cpu:0x100,0x1000,0x1000000,0x10000000 ./app

0.0%	32	0.0%
1 0.0%	33	0.0%
2 0.0%	34	0.0%
3[0.0%]	35	0.0%
4[0.0%]	36[0.0%
5[0.0%]	37	0.0%
6[0.0%]	38[0.0%
7[0.0%]	39[0.0%
8[40[0.0%
9[0.0%]	41[0.0%
10[0.0%]	42[0.0%
11[0.0%]	43[0.0%
12[44[0.0%
13[0.0%]	45[0.0%
14[0.0%]	46[0.0%
15[0.0%]	47[0.0%
16[0.0%]	48[0.0%
17[0.0%]	49[0.0%
18[0.0%]	50	0.0%
19[0.0%]	51[0.0%
20[0.0%]	52	0.0%
21[0.0%]	53[0.0%
22[0.0%]	54[0.0%
23[0.0%]	55[0.0%
24[56[0.0%
25[0.0%]	57[0.0%
26[0.0%]	58[0.0%
27[0.0%]	59[0.0%]
28[60	0.0%
29[0.0%]	61	0.0%]
30[0.0%]	62	0.0%
31[0.0%]	63	0.0%

SCRATCH filesystem	
Mountpoint	/scratch
Capacity	1361 TB
Throughput	730.9 GB/s write, 1198.3 GB/s read
Default stripe size	1 MB
Default stripe count	1
Protocol	Lustre

High Performance Data Network (Omni-Path, InfiniBand, 10/40/100GbE)

Lustre filesystem

- Metadata server for storing information about a file
- A file is divided into multiple chunks (stripes)
- Each chunk can be stored on different object storage target (disk)
- Round-robin distribution
- Assure coherency when multiple clients access the same file

VSB TECHNICAL

UNIVERSITY OF OSTRAVA **IT4INNOVATIONS**

CENTER

NATIONAL SUPERCOMPUTING

High Performance Data Network (Omni-Path, InfiniBand, 10/40/100GbE)

Lustre filesystem settings

- stripe_size
 - the size of the chunk in bytes
 - the size must be an even multiple of 65,536 bytes
 - default is 1MB
- stripe_count
 - the number of OSTs to stripe across
 - default is 1
 - specify -1 to use all OSTs in the filesystem
- stripe_offset
 - index of the OST where the first stripe is to be placed
 - default is -1 which results in random selection
 - using a non-default value is NOT recommended

High Performance Data Network (Omni-Path, InfiniBand, 10/40/100GbE)

Get stripe settings

• \$ lfs getstripe dir | filename

Set stripe settings

• \$ lfs setstripe -s stripe_size -c stripe_count dir|filename

Set stripping according to your application needs

- Performance for large files improve when the stripe_count is set to a larger value
- Large files should use stripe counts of greater than 1
- A rule of thumb is to use a stripe count approximately equal to the number of gigabytes in the file.
- Make the stripe count be an integral factor of the number of processes performing the write in parallel
- It achieves load balance among the OSTs
- <u>https://doc.lustre.org/lustre_manual.xhtml#managingstripingfreespace</u>

Ondrej Meca ondrej.meca@vsb.cz

IT4Innovations National Supercomputing Center VSB – Technical University of Ostrava Studentská 6231/1B 708 00 Ostrava-Poruba, Czech Republic www.it4i.cz VSB TECHNICAL | IT4INNOVATIONS |||| UNIVERSITY | NATIONAL SUPERCOMPUTING OF OSTRAVA | CENTER

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

