

MAQAO

Performance Analysis and Optimization Framework

Cédric VALENSI cedric.valensi@uvsq.fr Performance Evaluation Team, University of Versailles Paris-Saclay <u>http://www.maqao.org</u> VI-HPS 46th TW Ostrava, Czech Republic 04–06 September 2024

A multifaceted problem

What type of problems are we facing?

- CPU or data access problems
- Identifying the dominant issues: Algorithms, implementation, parallelisation, ...

What transformations to apply?

- Compiler switches, Partial/full vectorization
- Loop blocking/array restructuring, If removal, Full unroll
- Binary tranforms (prefetch),
- ...

Making the **best use** of the machine features Finding the **most rewarding** issues to be fixed

- 40% total time, expected 10% speedup
 - ➡ TOTAL IMPACT: 4% speedup
- 20% total time, expected 50% speedup
 - → TOTAL IMPACT: 10% speedup

→ Need for dedicated and complementary tools

Our Approach

Nobody wants problems everybody wants solutions ©

- Focusing on the knobs that code developers can operate:
 - Compiler flags and runtime settings
 - Code restructuring
 - Data restructuring
- Helping the user in using these knobs

→ Instead of pinpointing problems, guiding the user towards a way to address them.

Philosophy: Analysis at Binary Level

- Compiler optimizations increase the distance between the executed code and the source code
- Source code instrumentation may prevent the compiler from applying certain transformations

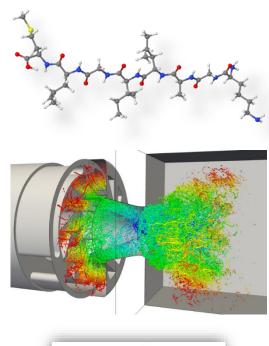
➔ What You Analyse Is What You Run

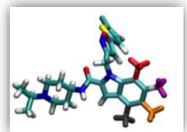
MAQAO: Modular Assembly Quality Analyzer and Optimizer

Objectives:

- Characterizing performance of HPC applications
- Focusing on performance at the core level
- Guiding users through the optimization process
- Estimating return on investment (R.O.I.)

Characteristics:


- Modular tool offering complementary views
- Support for x86-64 and Aarch64 (beta version)
 - Work in progress on GPU support
- LGPL3 Open Source software
- Developed at UVSQ since 2004
- Binary release available as a static executable



Success stories

Optimizing industrial and academic HPC applications:

- QMC=CHEM (IRSAMC)
 - Quantum chemistry
 - Speedup: > 3x
 - Optimization: moved invocations of functions with identical parameters out of the loop body
- Yales2 (CORIA)
 - Computational fluid dynamics
 - Speedup: up to 2.8x
 - Optimization: removing double structure indirections
- Polaris (CEA)
 - Molecular dynamics
 - Speedup: 1.5x 1.7x
 - Optimization: enforcing loop vectorization through compiler directives
- AVBP (CERFACS)
 - Computational fluid dynamics
 - Speedup: **1.08x 1.17x**
 - Replaced divisions by reciprocal multiplications
 - Complete unrolling of loops with a small number of iterations

Partnerships

MAQAO is part of the POP Centre of Excellence

- Provides performance optimisation and productivity services for academic and industrial codes
- <u>https://pop-coe.eu/</u>

MAQAO has been funded by UVSQ, Intel and CEA (French department of energy) through Exascale Computing Research (ECR) and through various European projects (FUI/ITEA: H4H, COLOC, PerfCloud, ELCI, POP2 CoE, TREX CoE, etc...)

Provided core binary analysis and instrumentation capabilities and features for other tools:

- TAU performance tools with MADRAS patcher through MIL (MAQAO Instrumentation Language)
 - X86_64 only, aarch64 under development
- Intel Advisor

More on MAQAO

MAQAO website: www.maqao.org

- Mirror: <u>maqao.liparad.uvsq.fr</u>
- Documentation: <u>www.maqao.org/documentation.html</u>
 - Tutorials for ONE View, LProf and CQA
 - Lua API documentation
- Latest release: <u>http://www.maqao.org/downloads.html</u>
 - Binary releases (2-3 per year)
 - Source code
- Publications around MAQAO: <u>http://www.maqao.org/publications.html</u>
- Repository of MAQAO analyses: <u>http://datafront.exascale-computing.eu/public/</u>
- Email: <u>contact@maqao.org</u>

MAQAO Main Features

Binary layer

- Builds internal representation from binary
 - Construct high level structures (CFG, DDG, SSA, ...)
 - Links binary instructions to source code
 - \triangle A single source loop can be compiled as multiple assembly loops \rightarrow Affecting unique identifiers to loops
- Allows patching through binary rewriting

Profiling

LProf: Lightweight sampling-based Profiler operating at process, thread, function and loops level

Static analysis

• CQA (Code Quality Analyzer): Evaluates the quality of the binary code and offers hints for improving it

Performance view aggregation module: ONE View

- Goal: Guiding the user through the analysis & optimization process.
- Synthesizes information provided by different MAQAO modules
- Automatizes execution of experiments invoking other MAQAO modules and aggregates their results to produce high-level reports in HTML or XLSX format

VIRTUAL INSTITUTE -- HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO LProf: Lightweight Profiler

Goal: Lightweight localization of application hotspots

Features:

- Lightweight
- Sampling based
- Access to hardware counters
- Analysis at function and loop granularity

Strengths:

• Non intrusive: No recompilation necessary

Low overhead

Agnostic with regard to parallel runtime

MARAO Global Application Functions

Loops Help

unctions and Loops

Right-click on a line to display the associated load balancing. Double click on a loop to display its analysis details.

		Module	Coverage (%)	Time (s)	Nb Threads	Deviatio
 binvcrhs 		bt-mz.C.16	23.19	13.66	64	1.73
▼ y_solve		bt-mz.C.16	13.09	7.71	64	1.08
Loop 204 - y_solve.f:53-407 - bt-mz.C.16			12.84	7.56		
▼ Loop 205 - y_solve.f:54-407 - bt-mz.C.16			12.84	7.56		
Loop 207 - y_solve.f:54-398 - bt-mz.C.16			12.84	7.56		
 Loop 211 - y_solve.f:145-307 - bt-mz.C.16 			7.06	4.16		
 Loop 213 - y_solve.f:55-137 - bt-mz.C.16 			4.43	2.61		
 Loop 206 - y_solve.f:394-398 - bt-mz.C.16 			0.88	0.52		
 Loop 209 - y_solve.f:337-360 - bt-mz.C.16 			0.33	0.19		
 Loop 210 - y_solve.f:145-307 - bt-mz.C.16 			0.09	0.05		
 Loop 212 - y_solve.f:55-137 - bt-mz.C.16 			0.05	0.03		
x_solve		bt-mz.C.16	12.49	7.35	64	1.02
 _INTERNAL_25src_kmp_barrier_cpp_ce635104::, kmp_info*, int, int, void*) 	kmp_hyper_barrier_release(barrier_type,	libiomp5.so	12.36	7.28	64	8.22
▶ matmul sub		bt-mz.C.16	11.95	7.04	64	0.92
► z solve		L	0.00	4 70		0.57
► compute_rhs	b	t-mz.C.16 - Loop	211			
► matvec_sub		•				
 MPIDI_CH3I_Progress 	1					
				_		
 binyrhs 						
► Ihsinit						
► Ihsinit ► add#omp_loop_0				I.I.		
 ▶ Ihsinit ▶ add#omp_loop_0 > system_call_after_swapgs 		أياليال	ul.	Ŀ.		
► Ihsinit ► add#omp_loop_0 ○ system_call_after_swapgs ○ _INTERNAL_25src_kmp_barrier_cpp_ce635104:				h	الرال	
 Ihsinit add#omp_loop_0 system_call_after_swapgs _INTERNAL_25src_kmp_barrier_cpp_ce635104: kmp_info*, int, int, void (*)(void*, void*), void*) sysret check 	5-					
 Ihsinit add#omp_loop_0 system_call_after_swapgs _INTERNAL_25src_kmp_barrier_cpp_ce635104: cmp_info*, int, int, void (*)(void*, void*), void*) systet check 	5-					
 Ihsinit add#omp_loop_0 system_call_after_swapgs _INTERNAL_25src_kmp_barrier_cpp_ce635104: cmp_info*, int, int, void (*)(void*, void*), void*) systet check 	5-					
 Ihsinit add#omp_loop_0 system_call_after_swapgs _INTERNAL_25src_kmp_barrier_cpp_ce635104: cmp_info*, int, int, void (*)(void*, void*), void*) systet check 	5-					
 Ihsinit add#omp_loop_0 system_call_after_swapgs INTERNAL_25src_kmp_barrier_cpp_ce635104: kmp_info*, int, int, void (*)(void*, void*), void*) sysret_check _kmp_yield apic_timer_interrupt copy_x_face#omp_loop_0 	Coverage					
Ihsinit Ihsinit add#omp_loop_0 o system_call_after_swapgs o _INTERNAL_25src_kmp_barrier_cpp_ce635104: kmp_info*, int, int, void (*)(void*, void*), void*) o sysret_checkkmp_yield o _apic_timer_interrupt copy_x_face#omp_loop_0 exact_solution	5-					
Ihsinit hadd#omp_loop_0 system_call_after_swapgs system_call_after_system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after_system_call_after system_call_after	Coverage					
<pre>blsinit add#omp_loop_0 o system_call_after_swapgs o_INTERNAL_25src_kmp_barrier_cpp_ce635104: kmp_info*, int, int, void (*)(void*, void*), void*) o sysret_check okmp_yield o apic_timer_interrupt copy_x_face#omp_loop_0 e exact_solution o update_curr oaudit_syscall_entry</pre>	Coverage					
<pre>blsinit badd#omp_loop_0 osystem_call_after_swapgs o_lNTERNAL_25src_kmp_barrier_cpp_ce635104: kmp_info*, int, int, void (*)(void*, void*), void*) osysret_check okmp_yield apic_timer_interrupt copy_x_face#omp_loop_0 exact_solution oupdate_curr oaudit_syscall_entry oschedule</pre>	Coverage					
<pre>blsinit badd#omp_loop_0 system_call_after_swapgs o_system_call_after_swapgs o_lNTERNAL_25src_kmp_barrier_cpp_ce635104: kmp_info*, int, int, void (*)(void*, void*), void*) o_sysret_check okmp_yield o_apic_timer_interrupt b_copy_x_face#omp_loop_0 bexact_solution o_update_curr oaudit_syscall_entry oschedule task_tick_fair</pre>	Coverage					
 add#omp_loop_0 system_call_after_swapgs _INTERNAL_25src_kmp_barrier_cpp_ce635104: kmp_info*, int, int, void (*)(void*, void*), void*) sysret_check kmp_yield apic_timer_interrupt copy_x_face#omp_loop_0 exact_solution update_curr audit_syscall_entry _schedule task_tick_fair copy_y_face#omp_loop_0 	Coverage					
<pre>blsinit add#omp_loop_0 system_call_after_swapgsINTERNAL_25src_kmp_barrier_cpp_ce635104: kmp_info*, int, int, void (*)(void*, void*), void*) sysret_checkkmp_yield apic_timer_interrupt copy_x_face#omp_loop_0 exact_solution update_curraudit_syscall_entryschedule task_tick_fair b copy_y_face#omp_loop_0 copuact_charge</pre>	Coverage					
Ihsinit Idd#omp_loop_0 system_call_after_swapgs _INTERNAL_25src_kmp_barrier_cpp_ce635104: cmp_info*, int, int, void (*)(void*, void*), void*) o systet_checkkmp_vield apic_timer_interrupt copy_x_face#omp_loop_0 exact_solution update_curraudit_syscall_entryaschedule task_tick_fair copy_face#omp_loop_0	 	9942 30071 30070	30862 3	0040 300	07 3061	30887

MAQAO CQA: Code Quality Analyzer

Goal: Assist developers in improving code performance

Features:

- Static analysis: no execution of the application
- Allows cross-analysis of/on multiple architectures
- Evaluates the quality of compiler generated code
- Proposes hints and workarounds to improve quality/performance
- Loops centric
 - In HPC, loops cover most of the processing time
- Targets compute-bound codes

Static Reports

▼ CQA Report

The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_solve.f:415-423

▼ Path 1

2% of peak computational performance is used (0.77 out of 32.00 FLOP per cycle (GFLOPS @ 1GHz)) gain potential hint expert

Code clean check

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing them, you can lower the cost of an iteration from 65.00 to 57.00 cycles (1.14x speedup).

Workaround

- Try to reorganize arrays of structures to structures of arrays
- Consider to permute loops (see vectorization gain report)
- To reference allocatable arrays, use "allocatable" instead of "pointer" pointers or qualify them with the "contiguous" attribute (Fortran 2008)
- For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b set to a%b before this loop

Vectorization

Your loop is not vectorized. 8 data elements could be processed at once in vector registers. By vectorizing your loop, you can lower the cost of an iteration from 65.00 to 8.12 cycles (8.00x speedup).

Workaround

- Try another compiler or update/tune your current one:
- use the vec-report option to understand why your loop was not vectorized. If "existence of vector dependences", try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient", try the VECTOR ALWAYS directive.
- Remove inter-iterations dependences from your loop and make it unit-stride:
 - If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and, otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i do j a(i,j) = b(i,j) (slow, non stride 1) => do i do j a(j,i) = b(i,j) (fast, stride 1)
 - \circ If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i a(i)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Execution units bottlenecks

Found no such bottlenecks but see expert reports for more complex bottlenecks.

"What If" Scenarios: Vectorization

<u>Code "Clean"</u>

- Generate an Assembly "Clean" variant : keep only FP Arithmetic and Memory operations, suppress all other
- Generate a CQA Performance estimate on the "Clean" Variant

Code "FP Vector"

- Generate an Assembly "FP Vector" variant : only replace scalar FP Arithmetic by Vector FP Arithmetic equivalent. Generate additional instructions to fill in Vector Registers.
- Generate a CQA Performance estimate

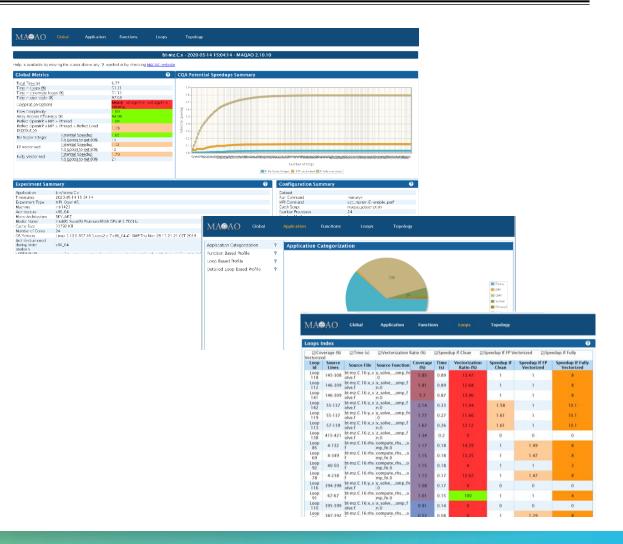
Code "Full Vector"

- Generate an Assembly "Full Vector" variant : replace both scalar FP Arithmetic and FP Load/Store by their Vector equivalent.
- Generate a CQA Performance estimate

All of these "What If Scenarios" are generated in a fully static manner.

MAQAO ONE View: Performance View Aggregator

Automating the whole analysis process


- Invoke multiple MAQAO modules
- Generate aggregated performance views
- Generate a report in HTML format

Main steps:

- Invokes LProf to identify hotspots
- Invokes CQA on hotspots

Available results:

- Speedup predictions
- High-level summary
- Global code quality metrics
- Hints for improving performance
- Parallel efficiency analysis

ONE View Reports Levels

ONE VIEW ONE

- Requires a single run of the application
- Profiling of the application using LProf
- Static analysis using CQA

Scalability mode

- Multiple executions with varying parallel configurations
- Allows to evaluate scalability or parallel behaviour of applications

Comparison mode

- Comparison of multiple runs (iso-binary or iso-source)
- Allows to compare performance across different datasets, compilers, or hardware platforms

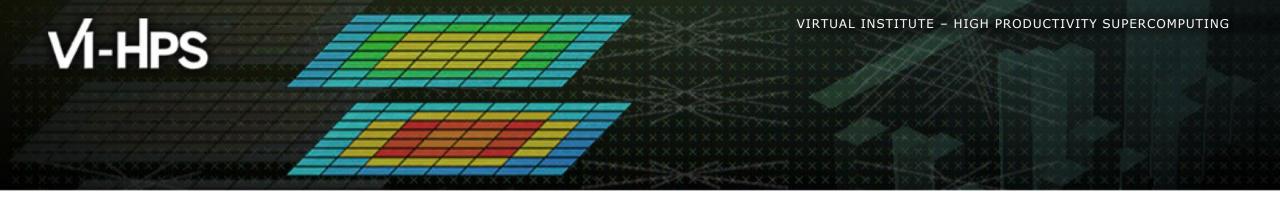
Stability mode

- Multiple runs with identical parameters
- Allows to assess the stability of execution time

Analysing an application with MAQAO

ONE View execution

- Provide all parameters necessary for executing the application
 - Parameters can be passed on the command line or as a configuration file
 - Parameters include binary name, MPI commands, dataset directory, ...


```
$ maqao oneview --create-report=one --executable=bt-mz.C.16 --mpi command="mpirun -n 16"
```

\$ maqao oneview --create-report=one --config=my_config.json"

- Analyses can be tweaked if necessary
 - Report level one corresponds to lightweight profiling (LProf) and code quality analysis (CQA)
- ONE View can reuse an existing experiment directory to perform further analyses
- Results available in HTML format by default
 - XLS spreadsheets and textual output generation are also available

Online help is available:

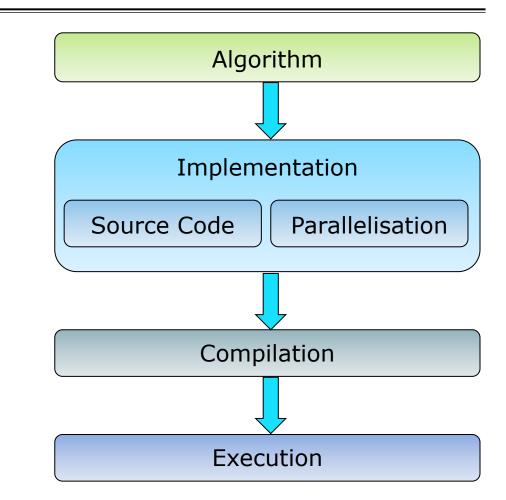
```
$ maqao oneview --help
```


Backup Slides

Performance analysis and optimisation

Where is the application spending most execution time and resources?

Why is the application spending time there?


- Algorithm, implementation, runtime or hardware?
- Data access or computation?

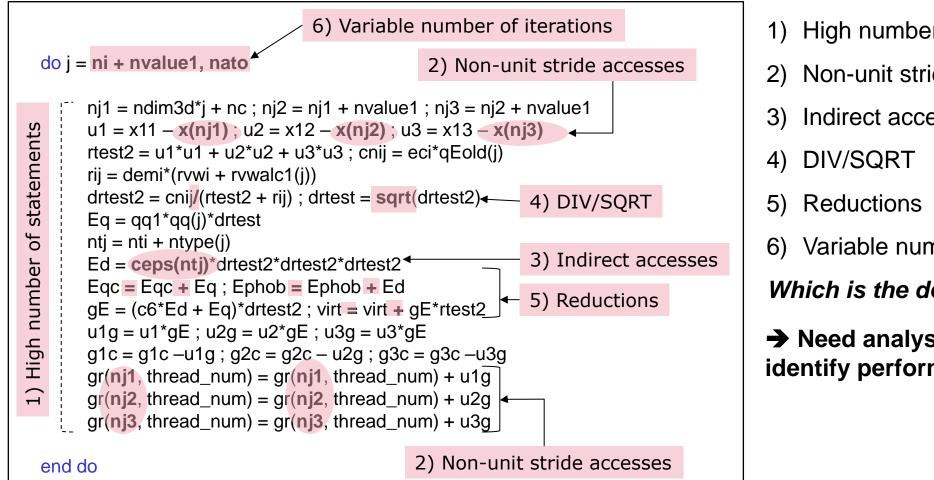
How to improve the application?

- At which step(s) of the workflow or dev process?
- What additional information is needed?

How much gain can be expected?

At what cost?

Motivating example


Code of a loop representing ~10% walltime

```
do_i = ni + nvalue1, nato
     nj1 = ndim3d^*j + nc; nj2 = nj1 + nvalue1; nj3 = nj2 + nvalue1
     u1 = x11 - x(nj1); u2 = x12 - x(nj2); u3 = x13 - x(nj3)
     rtest2 = u1^{*}u1 + u2^{*}u2 + u3^{*}u3; cnij = eci^{*}qEold(j)
     rij = demi*(rvwi + rvwalc1(j))
     drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)
     Eq = qq1*qq(j)*drtest
     ntj = nti + ntype(j)
     Ed = ceps(ntj)*drtest2*drtest2*drtest2
     Eqc = Eqc + Eq; Ephob = Ephob + Ed
     gE = (c6*Ed + Eq)*drtest2; virt = virt + gE*rtest2
     u1q = u1^{*}qE; u2q = u2^{*}qE; u3q = u3^{*}qE
     g1c = g1c - u1g; g2c = g2c - u2g; g3c = g3c - u3g
     gr(nj1, thread_num) = gr(nj1, thread_num) + u1g
     qr(nj2, thread num) = qr(nj2, thread num) + u2q
     gr(nj3, thread_num) = gr(nj3, thread_num) + u3g
```

Where are the bottlenecks?

Motivating example

Code of a loop representing ~10% walltime

- High number of statements
- Non-unit stride accesses
- Indirect accesses

Variable number of iterations

Which is the dominant one?

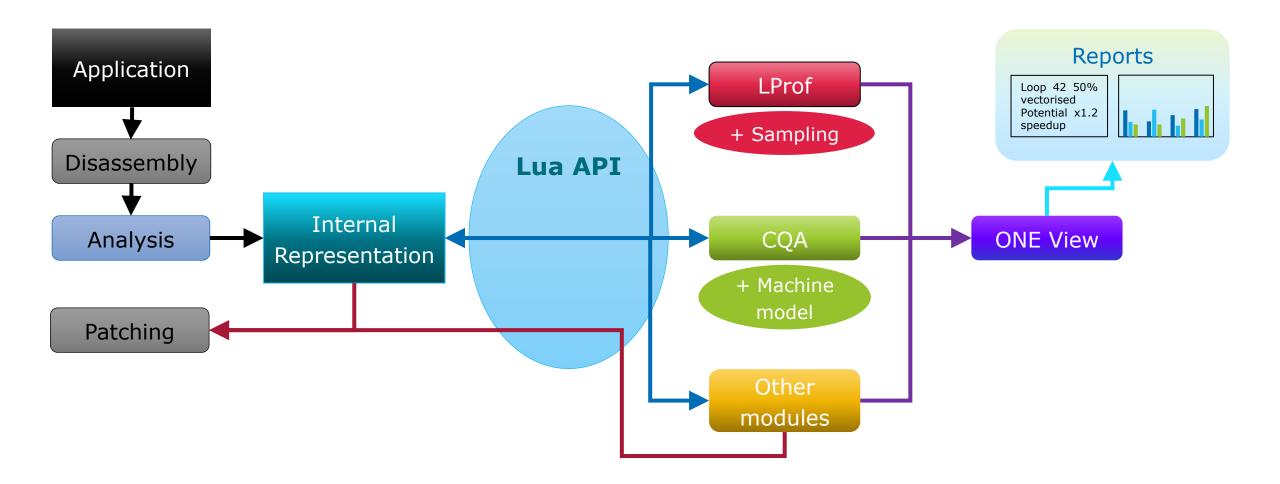
→ Need analysis tools to identify performance issues

MAQAO team and collaborators

MAQAO Team

- William Jalby, Prof.
- Cédric Valensi, Ph.D.
- Emmanuel Oseret, Ph.D.
- Mathieu Tribalat, M.Sc.Eng.
- Jäsper Salah Ibnamar, M.Sc.Eng.
- Hugo Bolloré , M.Sc.Eng
- Kévin Camus, Eng.
- Aurélien Delval, Eng.
- Max Hoffer, Eng.

Collaborators

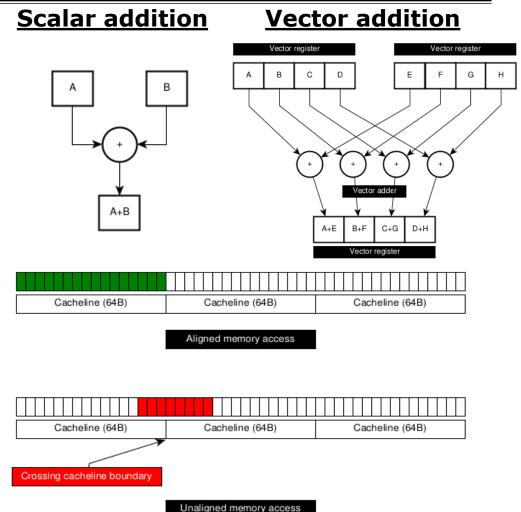

- David J. Kuck, Prof. (Intel US)
- Pablo de Oliveira, Prof. (UVSQ)
- Eric Petit, Ph.D. (Intel US)
- David C. Wong, Ph.D. (Intel US)
- Othman Bouizi, Ph.D. (Intel US)
- AbdelHafid Mazouz Ph.D.(Intel)
- Jeongnim Kim (Intel)

Past Collaborators or Team Members

- Andrés S. Charif-Rubial, Ph.D.
- Denis Barthou, Prof. (Univ. Bordeaux)
- Jean-Thomas Acquaviva, Ph.D. (DDN)
- Stéphane Zuckerman, Ph.D. (ENSEA)
- Julien Jaeger, Ph.D. (CEA DAM)
- Souad Koliaï, Ph.D. (CELOXICA)
- Zakaria Bendifallah, Ph.D. (ATOS)
- Tipp Moseley, Ph.D. (Google)
- Jean-Christophe Beyler, Ph.D. (Google)
- Jean-Baptiste Le Reste, M.Sc.Eng. (start-up)
- Sylvain Henry, Ph.D. (start-up)
- José Noudohouenou, Ph.D. (Intel US)
- Aleksandre Vardoshvili, M.Sc.Eng.
- Romain Pillot, Eng
- Youenn Lebras, Ph.D. (start-up)

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO Main structure


Useful notions

SIMD/Vectorization/Data Parallelism

- Scalar pattern: a[i] = b[i] + c[i]
- Vector pattern: a(i, i + 8) = b(i, i + 8) + c(i, i + 8)
- Benefits : increases memory bandwidth and IPC
- Example implementations :
 - ARM : Neon, SVE
 - x86 : SSE, AVX, AVX512

Memory and caches

- Computations are in general faster than memory accesses
- Alignment/Contiguity of memory (x86) : posix_memalign, aligned_alloc, ...
- Caches: L1, L2, L3, ...

MAQAO CQA: Main Concepts

Applications exploit at best 5 to 10% of the peak performance.

Main elements of analysis:

- Peak performance
- Execution pipeline
- Resources/Functional units

Key performance levers for core level efficiency:

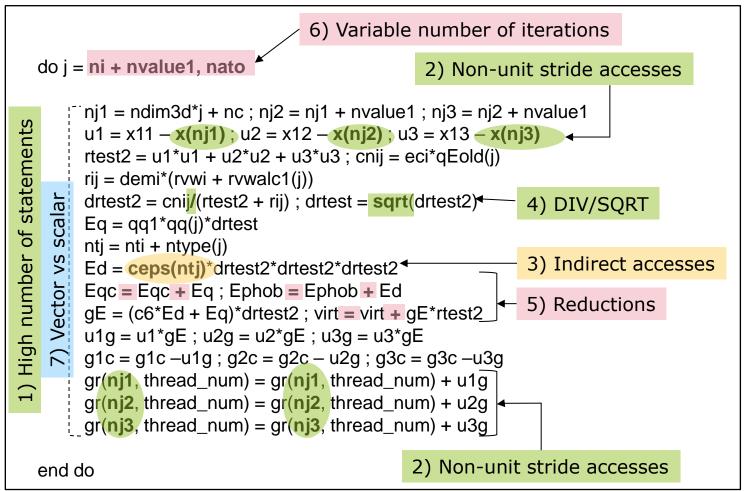
- Vectorization
- Avoiding high latency instructions if possible (DIV/SQRT)
- Guiding the compiler code optimization
- Reorganizing memory and data structures layout

Same instruction – Same cost

Process up to 8X data

MAQAO CQA: Guiding the compiler and implementation hints

Compilers can be driven using flags, pragmas, and keywords:


- Ensuring full use of architecture capabilities (e.g. using flag -xHost on AVX capable machines)
- Forcing optimizations (unrolling, vectorization, alignment, ...)
- Bypassing conservative behaviour when possible (e.g. 1/X precision)

Hints for implementation changes:

- Improve data access patterns
 - Memory alignment
 - Loop interchange
 - Changing loop strides
 - Reshaping arrays of structures
- Avoid instructions with high latency (SQRT, DIV, GATHER, SCATTER, ...)

Application to Motivating Example

Issues identified by CQA

CQA can detect and provide hints to resolve most of the identified issues:

- 1) High number of statements
- 2) Non-unit stride accesses
- 3) Indirect accesses
- 4) DIV/SQRT
- 5) Reductions
- 6) Variable number of iterations
- 7) Vector vs scalar

Analysing an application with MAQAO

MAQAO modules can be invoked separately for advanced analyses

- LProf
 - Profiling

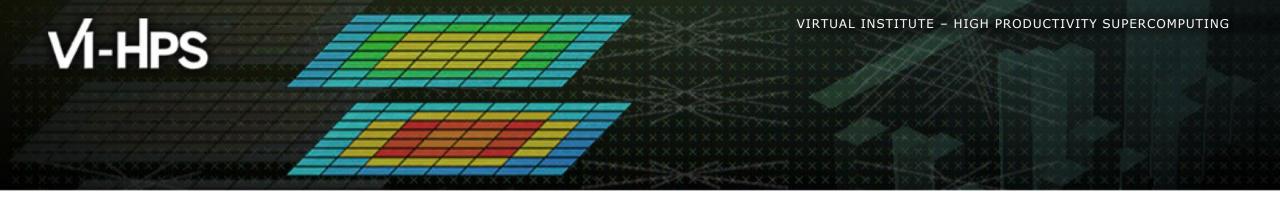
```
$ maqao lprof xp=exp_dir --mpi-command="mpirun -n 16 -ppn 4" ppn=4 -- ./bt-mz.C.16
```

Display functions profile

```
$ maqao lprof xp=exp_dir -df
```

Displaying the results from a ONE View run

```
$ maqao lprof xp=oneview_xp_dir/tools/lprof_npsu -df
```


```
    CQA
```

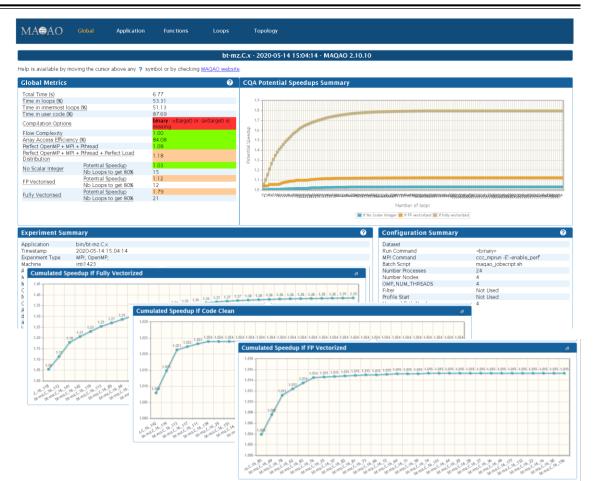
\$ maqao cqa loop=42 bt-mz.C.16

Online help is available:

\$ maqao lprof --help

\$ maqao cqa --help

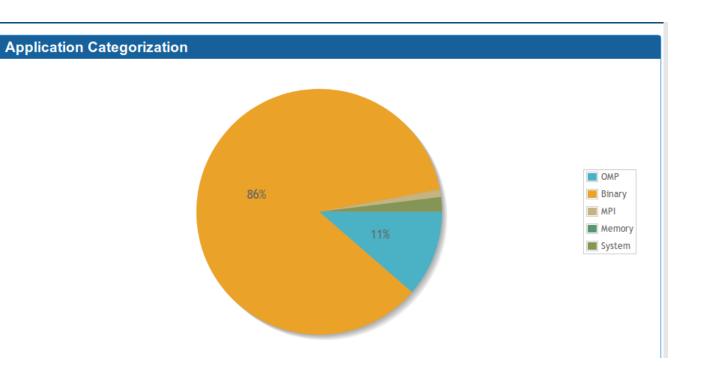
Navigating ONE View Reports


Global summary

Experiment summary

Machine characteristics and configuration

Global metrics


- General quality metrics derived from MAQAO analyses
- Global speedup predictions
 - Speedup prediction depending on the number of vectorised loops
 - Ordered speedups to identify the loops to optimise first

Time Categorisation

Identifying at a glance where time is spent

- Application
 - Main executable
- Parallelization
 - Threads
 - OpenMP
 - MPI
- System libraries
 - I/O operations
 - String operations
 - Memory management functions
- External libraries
 - Specialised libraries such as libm / libmkl
 - Application code in external libraries

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

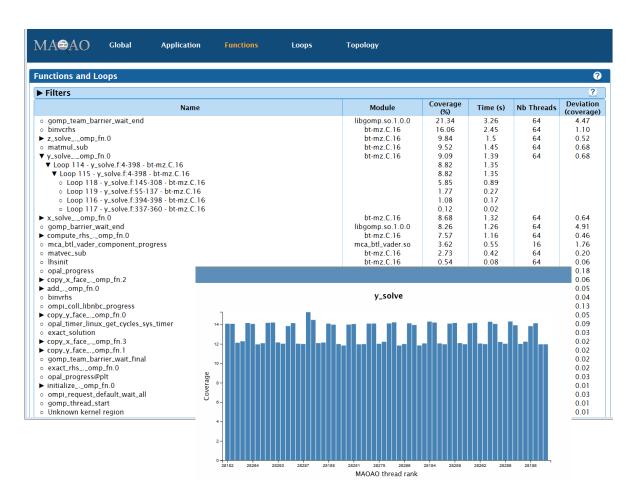
Functions Profiling

Identifying hotspots

- Exclusive coverage
- Load balancing across threads
- Loops nests by functions

- ▼ matmul_sub
 - Loop 230 solve_subs.f:71-175 bt-mz.C.16
 - Loop 231 solve_subs.f:71-175 bt-mz.C.16
- ▼ z_solve
 - Loop 232 z_solve.f:53-423 bt-mz.C.16
 - Loop 233 z_solve.f:54-423 bt-mz.C.16
 - Loop 236 z_solve.f:54-423 bt-mz.C.16
 - Loop 239 z_solve.f:146-308 bt-mz.C.16

Single


Outermost

Inbetween

Inbetween

Innermost

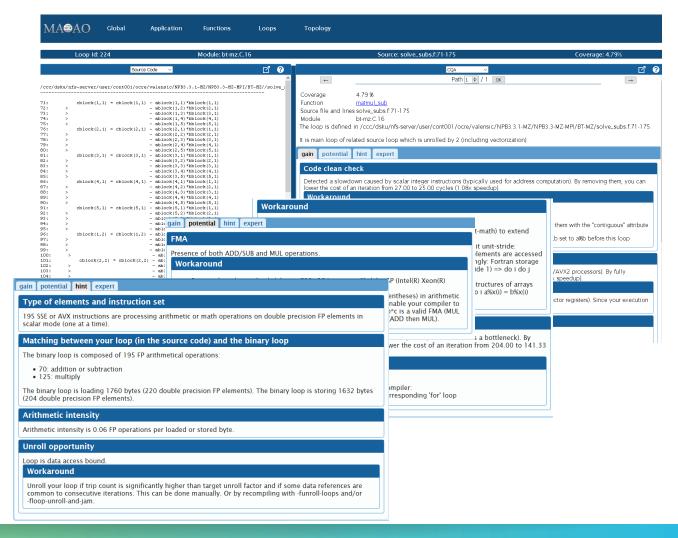
- Loop 235 z_solve.f:55-137 bt-mz.C.16
- Loop 234 z_solve.f:415-423 bt-mz.C.16

× × × VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

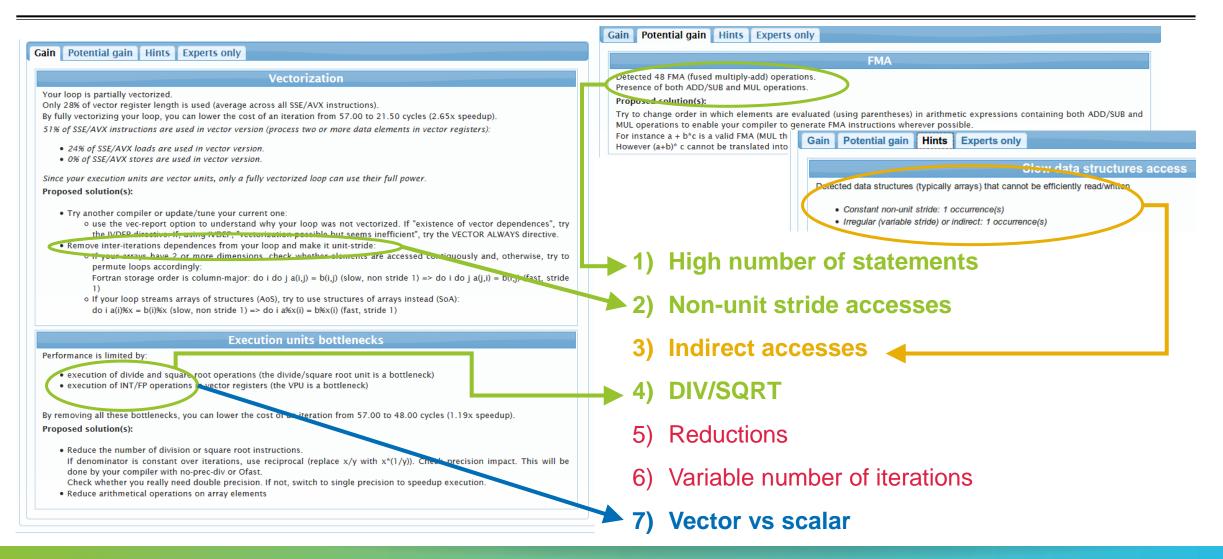
Loops Profiling Summary

Identifying loop hotspots

- Vectorisation information
- Potential speedup by optimisation
 - No scalar integer: Removing address computations
 - FP Vectorised: Vectorising floatingpoint computations
 - Fully Vectorised: Vectorising floating-point computations and memory accesses
 - Perfect Load Balancing: Optimal balance across all threads


MA	AO Global Application Functions Loops Topology											
Show Full I	Profile Open Expert Sur	nmary										
Loops	Index									?		
73 loops have been discarded from the report because their coverage is lower than the threshold set by <i>object_coverage_threshold</i> (0.01%). It represents about 0% of the application. To include them, change the value of <i>object_coverage_threshold</i> in the experiment directory configuration file, then rerun the command with the additionnal parameter <i>force-static-analysis</i>												
► Filte	ers									?		
	overage (%) ⊡Lev beedup If Perfect Loa		Vectoriza	ation Ratio	(%)	☑ Speedup If No Sc	alar Integer 🛛 🖂 S	peedup If FP Vector	ized ⊡Speedup	If Fully Vectorized		
Loop	Source Location	Source Function	Coverage (%)	Level	Time (s)	Vectorization Ratio (%)	Speedup If No Scalar Integer	Speedup If FP Vectorized	Speedup If Fully Vectorized	Speedup If Perfect Load Balancing		
179	bt-mz_C.8 - x_solv e.f:146-309	x_solveomp_fn. 0	7.67	Innermost	1.29	5.02	1.04	1	2.06	1.22		
207	bt-mz_C.8 - z_solve. f:146-309	z_solveomp_fn.	7.67	Innermost	1.29	5.31	1.02	1	2.06	1.15		
	bt-mz_C.8 - y_solve. f:145-308	y_solveomp_fn.	7.35	Innermost	1.24	5.17	1.03	1	2.06	1.22		
208	bt-mz_C.8 - z_solve. f:55-137	z_solveomp_fn.	3.48	Innermost	0.59	7.09	1	1.13	2.26	1.17		
180	bt-mz_C.8 - x_solv e.f:57-139	x_solveomp_fn. 0	3.09	Innermost	0.52	7.04	1 1.11		2.23	1.25		
196	bt-mz_C.8 - y_solve.	y_solveomp_fn. 0	3.06	Innermost	0.52	7.09	1	1.11	2.23	1.21		
	bt-mz_C.8 - rhs.f:40	compute_rhsom p_fn.0	2.41	Innermost	0.41	0	1	2	2	1.15		
133	bt-mz_C.8 - rhs.f:4-		1.84	Innermost	0.31	0	1	1.65	3.41	1.29		
150	bt-mz_C.8 - rhs.f:4-	1	1.77	Innermost	0.3	0	1	1.71	3.68	1.27		
	bt-mz_C.8 - rhs.f:4- 238	compute_rhsom p_fn.0	1.76	Innermost	0.3	0	1	1.65	3.41	1.27		
204	bt-mz_C.8 - z_solve.		1.7	Innermost	0.29	0	1	1	2.83	1.17		

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING


Loop Analysis Reports

High level reports

- Reference to the source code
- Bottleneck description
- Hints for improving performance
- Reports categorized by probability that applying hints will yield predicted gain
 - Gain: Good probability
 - Potential gain: Average probability
 - Hints: Lower probability

Application to Motivating Example

Loop Analysis Reports – Expert View

Low level reports for performance experts

- Assembly-level
- Instructions cycles costs
- Instructions dispatch predictions
- Memory access analysis

Assembly code

 Highlights groups of instructions accessing the same memory addresses

CQA internal metrics

			_													
	Gain Potential gain Hints Expe	erts on	у													
				ASM	l code											
	In the binary file, the address of the loo	p is: 421	409													
	Instruction	Nb F		P1	P2	P3	P4	P5	PG	Latency	Recip. throughput					
	MOVAPS %XMM13,%XMM5	1	0.50	0.50	0	0	0	0	0	2	0.50					
	INC %RDI	1	0	0	0	0	1.50	0.50	0	1	1					
	DIVSD 0x28(%R10,%RDX,1),%XMM5	4	1	0	0.50	0.50	0	0.50	0	40-42	12-32					
		1	0.50	0.50	0.50	0.50	0	0	0	2	0.50					
	MOVAPS %XMM5,%XMM15	1	0.50		-		0	0	0	6	0.50					
	MULSD %XMM5,%XMM15			0.50	0	0	-		-							
	MOVSD %XMM5,0x12890(%R14)	1	0	0	0.50	0.50	0	0	1	2	1					
	MULSD %XMM15.%XMM5	1	0.50	0.50	0	0	0	0	0	6	0.50					
LOC	ր Id: 224 Modւ	ule: bt-mz	16				0	0	1	2	1					
	Assembly Code 🗸 🗸						0	0	1	2	1					
							^ O	0	1	2	1					
e group nalysis	S						0	0	1	2	1					
MOVI	JPS (%RDI.%RAX.8).%XMM4 [3]					Source:	solve_su	ıbs.f:71-1	75							
	APS %XMM5,%XMM2										vanced V					
	D %XMM4,%XMM2					1										
0 LEA (KRCX,%RAX,8),%RSI				+					Path	1 🔹 / 1 OK					
	JPS (%RSI),%XMM15 [2]							P	detrio	с						
				Co	verage (9	6 app. tin	ne)									
	×28(%RDI,%RAX,8),%R8 JPS (%R8),%XMM2 [4]				ne (s)											
	JPS 0×1d0(%RSP),%XMM1 [1]					up if clea										
	PS %XMM12,%XMM14						arith vecto / vectoriz									
	D %XMM2,%XMM1						nter-iteral		enden	ICV						
	JPS 0×130(%RSP),%XMM0 [1]						t bottlene			,						
	D %XMM1,%XMM15 JPS 0×28(%R8).%XMM1 [4]			So	urce											
	D %XMM1,%XMM0					o unroll ir										
	D %XMM0,%XMM15						onfidenc									
	JPS 0×50(%R8),%XMM0 [4]				roll/vect roll facto		loop typ	e								
86 MOVI	JPS 0xd0(%/RSP),%/XMM3 [1]				A cycles											
	D %XMM0,%XMM3				A cycles											
	D %XMM3,%XMM15						h vectori	zed								
97 MOVI	IPS 0x78(%R8),%XMM3 [4]	1	0				ectorized	ł								
	MOVSD 0x38(%R10,%RDX,1),%XMM3		-	Fro	ont-end c	ycles										
	MOVSD 0x12898(%R14),%XMM2	1	0		cycles											
	MULSD %XMM3,%XMM2	1	0.50		cycles cycles											
	MIII SD &YMM5 &YMM2	1	0.50		cycles											
				1 PD	cycles											

MAQAO ONE View Thread/Process View

Software Topology

- List of nodes
- Processes by node
- Thread by process

View by thread

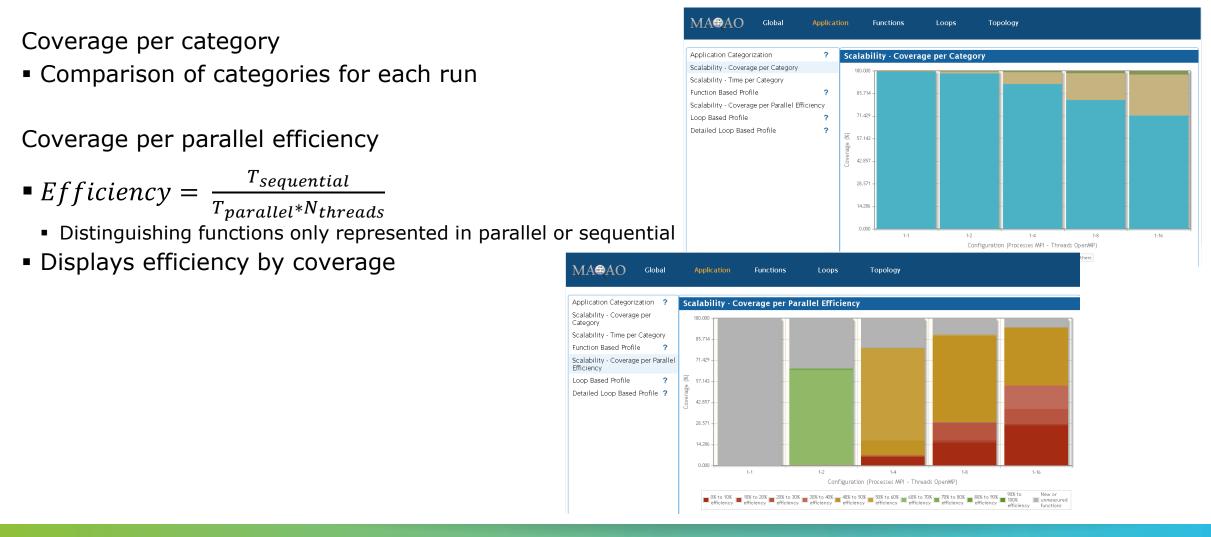
Function profile at the thread or process level

MAQAO

MARAO Global Application	Functions	Loops	Topology
Software Topology			
ID	Processes	Threads	Time(s)
▼ Node c251-109.wrangler.tacc.utexas.edu	8	32	5.34
▼ Process 145897		4	5.34
◦ Thread 145897			5.34
 Thread 145933 			5.32
 Thread 145952 			5.32
◦ Thread 145969			5.3
▶ Process 145899		4	5.34
▶ Process 145901		4	5.34
▶ Process 145903		4	5.34
► Process 145898		4	5.34
▶ Process 145900		4	5.34
▶ Process 145895		4	5.34
► Process 145896		4	5.34
► Node c251-110.wrangler.tacc.utexas.edu	8	32	5.36
• AVERAGE			5.36

Profiling node c251-109.wrangler.tacc.utexas.edu - process 145897 - thread 145897

Name	Module	Coverage (%)	Time (s)
 binvcrhs _INTERNAL_25src_kmp_barrier_cpp_fa608613::kmp_hy 	bt-mz_B.16	24.34	1.3
per_barrier_gather(barrier_type, kmp_info*, int, int, void (*)(void*, void*), void*)	libiomp5.so	17.6	0.94
▶ matmul_sub	bt-mz_B.16	12.73	0.68
► y_solve	bt-mz_B.16	7.87	0.42
compute_rhs	bt-mz_B.16	7.49	0.4
► x_solve	bt-mz_B.16	7.12	0.38
► z_solve	bt-mz_B.16	6.74	0.36


MAQAO ONE View Scalability Reports

Goal: Provide a view of the application scalability

- Profiles with different numbers of threads/processes
- Displays efficiency metrics for application

MAQAO ONE View Scalability Reports – Application View

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

MAQAO ONE View Scalability Reports – Functions and Loops Views

Displays metrics	Clobal Application Functions Loops Topology Functions and Loops														Ø						
function/loop	► Filte			?																	
•						1) Efficiency □(1-1) Po 16) Efficiency ☑(1-16)		ilency ⊠(1-2) Potential Speed-Up (%) ⊠(1-4) Efficiency ⊠(1-4) Potential Speed-Up (%) ⊠(1-8) Efficiency none								/ ☑(1-:	☑(1-8) Potential Speed-Up (%)				
 Efficiency 						Name			Module	Coverage (%)	Time (s) N		Deviation (coverage)	(1-1) (1- Efficiency Effici		al (1-4) Efficiency	(1-4) Potential / Speed- Up (%)		(1-8) Potential Speed- Up (%)	(1-16) F Efficiency	(1-16) Potential Speed- Up (%)
 Potential speed 	up i	f ef	ficienc	y=1		per_barrier_release(barrier_	_barrier_cpp_a _type, kmp_info		libiomp5.so	24.02	15.38	16	18.62	1	0	0.04	5.49	0.01	14.35	0.01	23
					∘ binv ► com				bt-mz.C.1 bt-mz.C.1	20.71 10.76	13.27 6.9	16 16	6.22 2.45	1 0. 1 0.6	7 6.14 53 2.68	0.55	10.2 5.39	0.45 0.26	11.58 8.47	0.41 0.25	11.43 7.57
	MA	AO	Global App	lication Functio	ns l	.oops Topology									2.91 2.69 2.48 2.06	0.57 0.55 0.55 0.54	4.44 4.24 3.73 3.56	0.44 0.42 0.46 0.45	5.75 5.43 4.09 3.92	0.41 0.37 0.41 0.39	5.45 5.61 4.18 4.11
	Loops I	ndex													0.91 0.12	0.57 0.44	1.31 0.22	0.45 0.25	1.62 0.41	0.41 0.09	1.59 1.17
	☑(1-2	erage (%)) Efficiency ect none	⊡Time (s) ⊡Vect ⊠(1-2) Potential Sp			clency 🛛 (1-4) Potential Speed-Up (%) 🖓 (1-8) Efficiency 🖓 (1-8) Potential Speed-Up (%) 🖓 (1-16) Efficiency 🖓 (1-16) Potential Speed-Up (%)										0.23		0.62			
	Loop id	Fourco	Source File	Source Function	(1-2) Efficiency	(1-2) Potential Speed- Up (%)	(1-4) Efficiency	(1-4) Potentia Up (%		1-8) (1-8 iciency) Potential Spe Up (%)	ed- (1-1 Efficie	6) (1-1)	6) Potential Spee Up (%)	ed- 0.11	0.57	0.27	0.53	0.24	0.42 0.44	0.31 0.21
	Loop 215	71-175	bt-mz.C.1:solve_subs	^s matmul_sub	0.71	1.51	0.56	2.49		0.45	2.99	0.4		2.96	0.06	0.27	0.15	0.07	0.24	0.04	0.34
	Loop 224	146-308	bt-mz.C.1:z_solve.f	z_solve	0.7	1.34	0.57	2.07		0.43	2.73	0.4	4	2.62	0.01	0.02	0.07	0.01	0.18	0.17	0.28
	Loop 192	146-308	bt-mz.C.1:x_solve.f	×_solve	0.66	1.22	0.52	1.91		0.45	1.92	0.3	9	2.04	0.07	0.48	0.1 0.16 0.04	0.31	0.16	0.37	0.1
	Loop 199	145-307	bt-mz.C.1:y_solve.f	y_solve	0.69	1.09	0.54	1.81		0.45	1.99	0.3	9	2.11		0.04		1	0.13	0.01	0.19 0.16
	Loop 169	40-50	bt-mz.C.1 :rhs.f	compute_rhs	0.52	0.49	0.23	1.59		0.11	2.95	0.1	1	2.3	0.03	0.64	0.03 0.02	0.39	0.07 0.02	0.43	0.05
	Loop 221	55-137	bt-mz.C.1:z_solve.f	z_solve	0.66	0.92	0.54	1.32	0	0.43	1.56	0.3	7	1.66	0	0.06 0.06	0.02 0.02	0.02 0.02	0.06 0.05		0.07 0.07
	Loop 189	57-139	bt-mz.C.1:x_solve.f	×_solve	0.71	0.7	0.57	1.14		0.47	1.28	0.4	3	1.26	0	0.12	0.01	0.06 0.03	0.02 0.04	0.02 0.02	0.06 0.06
	Loop 196	55-137	bt-mz.C.1:y_solve.f	y_solve	0.73	0.52	0.55	1.01		0.44	1.18	0.4	1	1.12	0	0.25 0.25	0.01 0.01	0.06 0.06	0.02 0.02	0.01 0.02	0.07 0.06
	Loop 165	65-67	bt-mz.C.1 :rhs.f	compute_rhs	0.45	0.55	0.24	1.22		0.11	2.31	0.1	3	1.64	0	0.06	0.02	0.04	0.03	0.02	0.06
	Loop 227	26-28	bt-mz.C.1 :add.f	add#omp_loop_0	0.64	0.12	0.44	0.22		0.25	0.4	0.0		1.14							
	Loop 220		-	z_solve	0.67	0.34	0.49	0.62		0.34	0.87	0.3		0.88							
	Loop 188		bt-mz.C.1:x_solve.f		0.62	0.5	0.56	0.57		0.44	0.69	0.4		0.65							
	Loop 216		bt-mz.C.1:solve_subs .f	-	0.77	0.23	0.62	0.41		0.48	0.54	0.4		0.62							
	Loop	304-349	bt-mz.C.1:rhs.f	compute_rhs	0.71	0.29	0.65	0.34	(0.46	0.56	0.4	4	0.5							

Thank you for your attention !

Questions ?

