
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P instrumentation and
measurement infrastructure

Reference material

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Filtering: source file name filter block

245TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

This is a comment
SCOREP_FILE_NAMES_BEGIN
 # by default, everything is included
 EXCLUDE */foo/bar*
 INCLUDE */filter_test.c
SCOREP_FILE_NAMES_END

§ Keywords
§ Case-sensitive

§ SCOREP_FILE_NAMES_BEGIN, SCOREP_FILE_NAMES_END
§ Define the source file name filter block

§ Block contains EXCLUDE, INCLUDE rules

§ EXCLUDE, INCLUDE rules
§ Followed by one or multiple white-space separated source file names

§ Names can contain bash-like wildcards *, ?, []

§ Unlike bash, * may match a string that contains slashes

§ EXCLUDE, INCLUDE rules are applied in sequential order

§ Regions in source files that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Filtering: region name filter block

345TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

This is a comment
SCOREP_REGION_NAMES_BEGIN
 # by default, everything is included
 EXCLUDE *
 INCLUDE bar foo
 baz
 main
SCOREP_REGION_NAMES_END

§ Keywords
§ Case-sensitive

§ SCOREP_REGION_NAMES_BEGIN,

SCOREP_REGION_NAMES_END

§ Define the region name filter block

§ Block contains EXCLUDE, INCLUDE rules

§ EXCLUDE, INCLUDE rules
§ Followed by one or multiple white-space separated region names

§ Names can contain bash-like wildcards *, ?, []

§ EXCLUDE, INCLUDE rules are applied in sequential order

§ Regions that are excluded after all rules are evaluated, get filtered

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Filtering: region name filter block, mangling

445TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

void bar(int* a) {
 *a++;
}
int main() {
 int i = 42;
 bar(&i);
 return 0;
}

§ Name mangling
§ Filtering based on names seen by the measurement

system
§ Dependent on compiler

§ Actual name may be mangled

§ scorep-score names as starting point

(e.g. matvec_sub_)
§ Use * for Fortran trailing underscore(s) for

portability

§ Use ? and * as needed for full signatures or

overloading

§ Use \ to escape special characters

filter bar:
for gcc-plugin, scorep-score
displays ‘void bar(int*)’,
other compilers may differ

SCOREP_REGION_NAMES_BEGIN
 EXCLUDE void?bar(int?)
SCOREP_REGION_NAMES_END

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering build systems

§ Hooking up the Score-P instrumenter scorep into complex build environments like
Autotools or CMake was always challenging

§ Score-P provides convenience wrapper scripts to simplify this (since Score-P 2.0)
§ Autotools and CMake need the used compiler already in the configure step, but
instrumentation should not happen in this step, only in the build step

§ Allows to pass addition options to the Score-P instrumenter and the compiler via
environment variables without modifying the Makefiles:
SCOREP_WRAPPER_INSTRUMENTER_FLAGS, SCOREP_WRAPPER_COMPILER_FLAGS

§ Run scorep-wrapper --help for a detailed description and the available wrapper
scripts of the Score-P installation

545TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

% SCOREP_WRAPPER=off \
> cmake .. \
> -DCMAKE_C_COMPILER=scorep-icc \
> -DCMAKE_CXX_COMPILER=scorep-icpc

Disable instrumentation in the
configure step

Specify the wrapper scripts as
the compiler to use

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API

§ Can be used to partition application into coarse grain phases
§ E.g., initialization, solver, & finalization

§ Can be used to further subdivide functions
§ E.g., multiple loops inside a function

§ Enabled with --user flag to Score-P instrumenter

§ Available for Fortran / C / C++

645TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (Fortran)

§ Requires processing by
the C preprocessor
§ For most compilers, this can

be automatically achieved by
having an uppercase file
extension, e.g., main.F or
main.F90

7

#include "scorep/SCOREP_User.inc"

subroutine foo(…)
 ! Declarations
 SCOREP_USER_REGION_DEFINE(solve)

 ! Some code…
 SCOREP_USER_REGION_BEGIN(solve, “<solver>", \
 SCOREP_USER_REGION_TYPE_LOOP)
 do i=1,100
 [...]
 end do
 SCOREP_USER_REGION_END(solve)
 ! Some more code…
end subroutine

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C/C++)

8

#include "scorep/SCOREP_User.h"

void foo()
{
 /* Declarations */
 SCOREP_USER_REGION_DEFINE(solve)

 /* Some code… */
 SCOREP_USER_REGION_BEGIN(solve, “<solver>",
 SCOREP_USER_REGION_TYPE_LOOP)
 for (i = 0; i < 100; i++)
 {
 [...]
 }
 SCOREP_USER_REGION_END(solve)
 /* Some more code… */
}

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P user instrumentation API (C++)

9

#include "scorep/SCOREP_User.h"

void foo()
{
 // Declarations

 // Some code…
 {
 SCOREP_USER_REGION(“<solver>",
 SCOREP_USER_REGION_TYPE_LOOP)
 for (i = 0; i < 100; i++)
 {
 [...]
 }
 }
 // Some more code…
}

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P measurement control API

§ Can be used to temporarily disable measurement for certain intervals
§ Annotation macros ignored by default
§ Enabled with --user flag

10

#include “scorep/SCOREP_User.inc”

subroutine foo(…)
 ! Some code…
 SCOREP_RECORDING_OFF()
 ! Loop will not be measured
 do i=1,100
 [...]
 end do
 SCOREP_RECORDING_ON()
 ! Some more code…
end subroutine

#include “scorep/SCOREP_User.h”

void foo(…) {
 /* Some code… */
 SCOREP_RECORDING_OFF()
 /* Loop will not be measured */
 for (i = 0; i < 100; i++) {
 [...]
 }
 SCOREP_RECORDING_ON()
 /* Some more code… */
}

Fortran (requires C preprocessor) C / C++

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Enriching measurements with performance counters

§ Record metrics from PAPI:

§ Use PAPI tools to get available metrics and valid combinations:

§ Record metrics from Linux perf:

§ Use the perf tool to get available metrics and valid combinations:

§ Write your own metric plugin
§ Repository of available plugins: https://github.com/score-p

11

% papi_avail
% papi_native_avail

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

% export SCOREP_METRIC_PAPI=PAPI_TOT_CYC
% export SCOREP_METRIC_PAPI_PER_PROCESS=PAPI_L3_TCM

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% export SCOREP_METRIC_PERF=cpu-cycles
% export SCOREP_METRIC_PERF_PER_PROCESS=LLC-load-misses

Only the master thread
records the metric
(assuming all threads of
the process access the
same L3 cache)

% perf list

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

§ Automatic compiler instrumentation greatly disturbs C++ applications because of
frequent/short function calls => Use sampling instead

§ Novel combination of sampling events and instrumentation of MPI, OpenMP, …
§ Sampling replaces compiler instrumentation (instrument with --nocompiler to further reduce

overhead) => Filtering not needed anymore
§ Instrumentation is used to get accurate times for parallel activities to still be able to identifies

patterns of inefficiencies

§ Supports profile and trace generation

§ Available since Score-P 2.0, only x86-64 supported currently

1245TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

% export SCOREP_ENABLE_UNWINDING=true
% # use the default sampling frequency
% #export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

§ Set new configuration
variable to enable
sampling

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering C++ applications

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024) 13

Less disturbed
measurement

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

§ Enables users to install library wrappers for any C/C++ library
§ Intercept calls to a library API
§ no need to either build the library with Score-P or add manual instrumentation to the application

using the library
§ no need to access the source code of the library, header and library files suffice

§ Score-P needs to be executed with --libwrap=…

§ Execute scorep-libwrap-init for directions:

1445TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

Step 1: Initialize the working directory
Step 2: Add library headers
Step 3: Create a simple example application
Step 4: Further configure the build parameters
Step 5: Build the wrapper
Step 6: Verify the wrapper
Step 7: Install the wrapper
Step 8: Verify the installed wrapper Step 9: Use the wrapper

Only once Often

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

§Generate your own library wrappers by telling scorep-libwrap-init how you would
compile and link an application, e.g. using FFTW

§Generate and build wrapper

1545TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

% scorep-libwrap-init \
> –-name=fftw \
> --prefix=$PREFIX \
> -x c \
> --cppflags=“-O3 -DNDEBUG -openmp -I$FFTW_INC“ \
> --ldflags=“-L$FFTW_LIB“ \
> --libs=“-lfftw3f -lfftw3“ \
> working_directory

% cd working_directory
% ls # (Check README.md for instructions)
% make # Generate and build wrapper
% make check # See if header analysis matches symbols
% make install #
% make installcheck # More checks: Linking etc.

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Wrapping calls to 3rd party libraries

§MPI + OpenMP
§ Calls to FFTW library

1645TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

§ Determine the maximum heap usage per process
§ Find high frequent small allocation patterns
§ Find memory leaks
§ Support for:
§ C, C++, MPI, and SHMEM (Fortran only for GNU Compilers)
§ Profile and trace generation (profile recommended)

§ Memory leaks are recorded only in the profile
§ Resulting traces are not supported by Scalasca yet

§ Available since Score-P 2.0
1745TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

% export SCOREP_MEMORY_RECORDING=true
% export SCOREP_MPI_MEMORY_RECORDING=true

% OMP_NUM_THREADS=4 mpiexec –np 4 ./bt-mz_W.4

§ Set new configuration
variable to enable
memory recording

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024) 18

Different maximum
heap usages per

ranks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering application memory usage

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024) 19

Memory leaksMemory leaks

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

§ Record CUDA applications and device activities

§ Record OpenCL applications and device activities

§ Record OpenACC applications

§ Can be combined with CUDA if it is a NVIDIA device

§ Check scorep-info config-vars –full for a wide range of further options and default values

20

% export SCOREP_CUDA_ENABLE=runtime,kernel,idle

45TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

% export SCOREP_OPENCL_ENABLE=api,kernel

% export SCOREP_OPENACC_ENABLE=yes

% export SCOREP_CUDA_ENABLE=kernel

Idle is an artificial region
defined as outside of

kernel time

Adding options will
increase overhead to a

varying degree

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Mastering heterogeneous applications

2145TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

Host-Device
memory
transfers

OpenACC
directives

CUDA API calls

Device activities

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Further information

§ Community instrumentation & measurement infrastructure
§ Instrumentation (various methods) and sampling

§ Basic and advanced profile generation

§ Event trace recording

§ Online access to profiling data

§ Available under 3-clause BSD open-source license

§ Documentation & Sources:
§ https://www.score-p.org

§ User guide also part of installation:
§ <prefix>/share/doc/scorep/{pdf,html}/

§ Support and feedback: support@score-p.org

§ Subscribe to news@score-p.org, to be up to date

2245TH VI-HPS TUNING WORKSHOP (LRZ, GERMANY, 10-13 JUNE 2024)

