

Performance Data Management with TAU PerfExplorer

Sameer Shende Performance Research Laboratory, University of Oregon http://TAU.uoregon.edu

TAU Analysis

TAUdb: Performance Data Management Framework

Using TAUdb

Configure TAUdb (Done by each user)

% taudb_configure --create-default

- Choose derby, PostgreSQL, MySQL, Oracle or DB2
- Hostname
- Username
- Password
- Say yes to downloading required drivers (we are not allowed to distribute these)
- Stores parameters in your ~/.ParaProf/taudb.cfg file
- Configure PerfExplorer (Done by each user)

% perfexplorer_configure

Execute PerfExplorer

% perfexplorer

Using PerfExplorer

```
% wget http://tau.uoregon.edu/data.tgz (Contains CUBE profiles from Score-P)
% taudb configure --create-default
(Chooses derby, blank user/passwd, yes to save passwd, defaults)
% perfexplorer configure
(Yes to load schema, defaults)
% paraprof
(load each trial: DB -> Add Trial -> Type (Paraprof Packed Profile) -> OK)
OR use taudb loadtrial -a "app" -x "experiment" -n "name" file.ppk
Then,
% tar zxf $TAU/data.tgz; cd data/tau;
% taudb loadtrial -a BT MZ -x "Class B" bt-mz B.*.ppk
% perfexplorer
(Select experiment, Menu: Charts -> Speedup)
```

Performance Data Mining (PerfExplorer)

Performance knowledge discovery framework

- Data mining analysis applied to parallel performance data
 comparative, clustering, correlation, dimension reduction, ...
- Use the existing TAU infrastructure
 - TAU performance profiles, taudb
- Client-server based system architecture
- Technology integration
 - Java API and toolkit for portability
 - taudb
 - R-project/Omegahat, Octave/Matlab statistical analysis
 - WEKA data mining package
 - JFreeChart for visualization, vector output (EPS, SVG)

PerfExplorer: Using Cluster Analysis

- Performance data represented as vectors each dimension is the cumulative time for an event
- k-means: k random centers are selected and instances are grouped with the "closest" (Euclidean) center
- New centers are calculated and the process repeated until stabilization or max iterations
- Dimension reduction necessary for meaningful results
- Virtual topology, summaries constructed

PerfExplorer - Cluster Analysis (sPPM)

data

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

PerfExplorer - Correlation Analysis (Flash)

• Describes strength and direction of a linear relationship between two variables (events) in the

PerfExplorer - Correlation Analysis (Flash)

-0.995 indicates strong, negative relationship
 As CALC_CUT_
 BLOCK_CONTRIBUTIONS() increases in execution time, MPI_Barrier() decreases

PerfExplorer - Comparative Analysis

- Relative speedup, efficiency
 - total runtime, by event, one event, by phase
- Breakdown of total runtime
- Group fraction of total runtime
- Correlating events to total runtime
- Timesteps per second

Ví-HPS

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

PerfExplorer - Interface

PerfExplorer - Interface

Per Per	fExplorer Client	
le <u>A</u> nalysis <u>C</u> harts <u>H</u> elp		
gyro.B1-s Set Group Name	Analysis Management	Performance Explorer
B1-stc Set Metric of Interest	Field	Mahua
B1-stc Set Event of Interest	Name	R1_std_nl2_cheetah_noaffnosng
B1-stc Set Total Number of Timesteps	Experiment ID	16
B1-stc Timesteps Per Second	system_name	10
B1-stc Relative Efficiency	system_machine_type	
Relative Efficiency by Event	system_arch	
B1-stc Relative Efficiency for One Event	system_os	
► B1-stc Relative Speedup	system_memory_size	
Relative Speedup by Event	system_processor_amt	
Relative Speedup for One Event	vstem_l2_cache_size	
B1-str Communication Time / Total Runtime	em_userdata	
Runtime Breakdown		
► ■ B1-std.hockney	Select analysis	
B1-std.new.phoenix.0x002		
B1-std.phoenix.0x002	compiler_java_dirpath	
B1-std.phoenix.0x002scr	compiler_java_version	
B1-std.ram0x002.a	compiler_userdata	
B1-std.ram0x002.b	configure_prefix	
▼ 🗊 B1-std.seaborg	configure_arch	
B1-std.timing.seaborg.128	configure_cc	
B1-std.timing.seaborg.16	configure_jdk	
B1-std.timing.seaborg.256	configure_profile	
B1-std.timing.seaborg.32	configure_userdata	
B1-std.timing.seaborg.512	userdata	
B1-std.timing.seaborg.64		
► 🗇 B1-std.tg		
gyro.B2-cy		
avro B3-atr		

PerfExplorer - Relative Efficiency Plots

PerfExplorer - Relative Efficiency by Routine

PerfExplorer - Relative Speedup

PerfExplorer - Timesteps Per Second

Evaluate Scalability

- Goal: How does my application scale? What bottlenecks occur at what core counts?
- Load profiles in taudb database and examine with PerfExplorer

Evaluate Scalability

VI-HPS

VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

PerfExplorer

Performance Regression Testing

Ví-HPS

Support Acknowledgments

- U.S. Department of Energy (DOE)
 - Office of Science
 - PNNL, LBL, ORNL
 - ASC/NNSA, Tri-labs (LLNL,LANL, SNL)
- U.S. Department of Defense (DoD)
 - HPC Modernization Office (HPCMO)
- NSF Software Development for Cyberinfrastructure (SDCI)
- Juelich Supercomputing Center, NIC
- Argonne National Laboratory
- T.U. Dresden
- ParaTools, Inc.

Download TAU from U. Oregon

http://tau.uoregon.edu

http://www.hpclinux.com [LiveDVD, OVA]

Free download, open source, BSD license